

SERIE DE DOCUMENTOS DE TRABAJO

SDT 498

International Benchmarking for Country Economic Diagnostics

Autores:

Subal C. Kumbhakar Norman V. Loayza Vivian Norambuena

Santiago, Julio de 2020

sdt@econ.uchile.cl econ.uchile.cl/publicaciones

International Benchmarking for Country Economic Diagnostics: A Stochastic Frontier Approach*

Subal C. Kumbhakar State University of New York Norman V. Loayza World Bank Vivian Norambuena World Bank and University of Chile

June 2020

Abstract

This paper discusses and illustrates the analytical foundations of international comparisons (or benchmarking) for assessing a country's potential for improvement along various dimensions of social and economic development. By providing a methodology for international benchmarking, discussing various alternatives and choices, and presenting a cross-country illustration, the paper can help practitioners be less arbitrary and more systematic in their approach to international comparisons, as well as more realistic in their expectations for a country's improvement. The paper presents the stochastic frontier approach and applies it to estimate feasible frontiers or benchmarks for each variable, country, and year. It then interprets a country's (one-sided) departure from the benchmark as inefficiency or potential for improvement. This contrasts with the literature that compares countries by looking at raw variables or indicators, without considering that countries differ in structural endowments that constrain the maximum performance that a country could achieve in a policy-relevant horizon. The Stochastic Frontier approach also improves upon the literature that uses regression residuals to measure performance. Regression residuals are hard to interpret as inefficiency, because they are mixed with noise and take positive and negative values. As an illustration, the paper uses a panel of 142 countries with yearly data for 2005–14 and considers a set of 10 development indicators. It finds that the potential for improvement does not follow a simple relationship with economic development, with some lower-income countries being closer to their own feasible frontier than more advanced countries are.

Keywords: Economic Development, Benchmarking, Country Diagnostics, Stochastic Frontier JEL: O11, O40, O47, O57, C33, C51

^{*} We thank Marco Rojas, Nurlina Shaharuddin, and Izzati Ab Razak for excellent research assistance and Luis Servén, Sergio Schmukler, and Thorsten Beck for valuable insights and comments. We are, however, responsible for any remaining errors. We gratefully recognize partial funding from the World Bank's Knowledge for Change Program (KCPIII). The views expressed herein are those of the authors and do not necessarily reflect the views of the World Bank, its Executive Directors, or the countries they represent.

International Benchmarking for Country Economic Diagnostics

1. Introduction

This paper discusses and illustrates the analytical foundations of international comparisons (or benchmarking) for assessing a country's potential along various dimensions of social and economic development. It can add value to the country economic diagnostics (or assessments) that are regularly produced by the worldwide community of development practitioners, including governments and international organizations.

The World Bank's Systematic Country Diagnostics (SCDs) is an example of an assessment that uses both international comparisons and detailed country-specific information. The SCDs, mandated for every country on a 3-5 yearly frequency, have become a valuable tool for assessing a country's prospects for achieving the World Bank's goals of eliminating poverty and promoting shared prosperity.

By providing a methodology for international benchmarking, discussing various alternatives and choices, and presenting a cross-country illustration, this paper can help practitioners and institutions be less arbitrary and more systematic in their approach to international comparisons, as well as more realistic regarding their expectations for improvement. Avoiding arbitrariness is an important consideration for international benchmarking. Practitioners may be tempted to manipulate the set of comparator countries to prove a point: by choosing a particular set of comparators, they can show that a country is deficient in a certain respect, while changing the comparator set can render the opposite conclusion. Another important consideration is that countries have different levels of development and different endowments. Assessing what improvements can be reasonably projected from a country at a point in time can guide policy decisions and moderate expectations. The present paper consists of two interrelated components. The first provides a conceptual framework where the rationale, principles, and challenges of international benchmarking are presented. It uses selected examples to make the discussion concrete. The second component proposes a methodology for systematic and realistic benchmarking. Among the various potential methodologies in the received literature, we select the stochastic frontier (SF) approach. This allows us to measure the inefficiency or room for improvement for a given development indicator while considering the structural endowments or predetermined conditions that can limit the indicator's potential.

The paper illustrates the use of the SF benchmarking methodology by constructing and using a large crosscountry panel data set, consisting of 142 countries, yearly data for 2005-14, and 10 development indicators. Despite its large scope, this exercise should be mainly considered as an illustration because it takes specific choices from the array of possibilities presented in the conceptual framework and assumes homogeneity of structural endowments across all indicators. Further work can strengthen the benchmarking exercise, focusing on a smaller set of development indicators and using more appropriate assumptions for their structural endowments and distribution functions.

The paper is organized as follows. After this introductory section, we discuss a conceptual framework for international benchmarking. Next, we present a selected review of the literature, where we consider the relative advantages of the stochastic frontier approach. We then present in detail the SF methodology and the cross-country panel data used for its application. Finally, we discuss the results on a set of development indicators and conclude by summarizing the paper's contributions and proposing extensions for further research.

2. Conceptual Framework

The analytical foundation of a benchmarking exercise can be discussed in the context of three questions:

- *Why* is the country diagnostic undertaken?
- What indicators should be used to assess the country diagnostic?
- *How* should the international comparisons of these indicators be implemented?

The *why* and *what* questions should be addressed by well-defined objectives of social and economic development. In an econometric model, the objectives of social and economic development (the *why*) define the dependent or "left-hand side" variables of a regression equation. Correspondingly, the benchmarking indicators (the *what*) would correspond to the explanatory or "right-hand side" regression variables. The specific objectives of social and economic development would change from country to country and would depend on the priorities of the institution conducting the assessment. As an example, for illustration purposes, we can present these objectives as improved growth, poverty alleviation, and economic resilience. The *why* and *what* questions would then be informed by the literatures that have studied these objectives thoroughly:

- On economic growth: The sustained increase in per capita output and income; and its drivers, including innovation, education, infrastructure, trade openness, financial depth, and macroeconomic stability; and the roles of the private sector and the government to promote it. See, for instance, Barro and Salai-Martin (2004) and Loayza, Fajnzylber, and Calderon (2005).
- On poverty alleviation: The reduction in the extent and the severity of poverty and vulnerability; and its determinants given by the creation of jobs with higher wages and by the policies that can accelerate this process most effectively, such as social protection, health coverage, and public education. See, for instance, World Bank (2015) and Ravallion (2016).
- On economic resilience: The ability to recover from adverse shocks (such as natural disasters, negative terms of trade shocks, and international financial crises) and to take advantage of positive changes (such as technological innovation and market size expansion); and its drivers, including individual and social protection, market and social insurance, firm and labor flexibility, and macroeconomic stability. See World Bank (2013).

In this example, the existing literature on these three broad objectives can provide an analytical framework to make sense of the information provided by the benchmarking exercise. Moreover, they can guide the selection of indicators (the *what*) that are most relevant and robust in the empirical evidence. They would include both macroeconomic factors and (aggregated) microeconomic conditions (from household-, worker-, and firm-level data). They would include, for instance, fiscal deficits and price stability; financial depth and inclusion; international trade openness and diversification; labor and product market flexibility; quality of public education, health care, and social safety nets; and bureaucratic efficiency and avoidance of corruption.

We turn now to the *how* question. This calls for a procedure to systematize the comparison of a given indicator across countries. The issue has been considered in a number of papers, usually in the context of a specific theme or question; see, for instance, King, Honaker, Joseph, and Scheve (2001), Hausmann, Rodrik, and Velasco (2008), Kaufmann, Kraay, and Mastruzzi (2011), and Ravallion (2012).

Benchmarking requires defining a relevant norm of comparison, and benchmarking internationally requires placing an indicator corresponding to a country in the context of a cross-country comparison.

Some important objectives for establishing a systematic norm of comparison are, first, avoiding arbitrariness in the selection of comparator countries and, second, making the comparison relevant for policy analysis. For these purposes, this norm should be established in relation to the endowments or predetermined conditions of the country such as geographic conditions, population size, and proximity to international markets, among others, and consider —at least in the initial analysis—the widest possible array of countries.

For example, a commonly used norm of comparison (benchmark) is dictated by the "regression line" of a given indicator on the set of endowments or predetermined conditions. To consider statistical error (derived, for instance, from measurement errors and omitted control variables), the norm of comparison would also consider sensible confidence bands. Indicators could then be judged as "normal," "superior," or "deficient," according to whether they fall, respectively, within, above, or below the confidence band. The stochastic frontier approach used in this paper builds and improves on this basic idea.

Once the basic norm of comparison has been established, benchmarking could be adjusted to accommodate different objectives. For instance, benchmarking could be static or dynamic. Static benchmarking would simply reflect the distance with respect to the international norm given by predetermined conditions at a given point in time. Dynamic benchmarking would take into account a desired path of development for the future, as represented by countries or regions that serve as international models of best practice.

3. Review of the Literature

There are several attempts in the literature to benchmark countries in different areas: financial development (Barajas et al. 2013; Beck et al. 2008; and Čihák et al. 2012); education (Bogetoft, Heinesen, and Tranæs 2015); infrastructure endowment (Yepes, Pierce, and Foster 2009); economic growth (Hausmann, Rodrik, and Velasco 2008; Felipe and Usui 2008); firm and sectoral performance (Assaf 2012; Edvardsen and Førsund 2003; Kumbhakar and Lien 2017); electoral accountability and democratic parliaments (Kayser and Peress 2012; Staddon and Toornstra 2016); and health care systems (Anell and Willis 2000; Viberg et al. 2013).

Not only are benchmarking applications extensive, but their methodologies are also diverse. Broadly speaking, we can distinguish two classes of methodologies. The first is based on a *regression* approach, where the benchmark is established by an estimated regression line. The second is based on a *frontier* approach, where the benchmark is projected as the maximum attainable value.

Regression approach

Beck et al. (2008) present one of the most influential benchmarking exercises, applying the regression approach to assess financial development. In this study the notion of benchmarking resides in the view that there are some structural characteristics that determine the level of financial development a country can achieve. The main contribution of Beck et al. (2008) lays in pointing out that comparing raw indicators of financial development across countries could lead to arbitrary conclusions because different stages of economic development and structural characteristics dictate different expected degrees of financial development.

To make more reasonable comparisons across countries, Beck et al. (2008) propose to estimate the following regression:

$$FDI_{it} = X_{it}\beta + \varepsilon_{it}$$

The dependent variables are financial development indicators (FDIs) that include size, efficiency and reach of financial institutions (e.g. banks) and markets (e.g. equity and bonds). And the controls (X_{it}) represent structural characteristics rather than policy-based variables. Thus, these variables are either policy invariant (such as population size) or react with some lag to policy (such as the GDP per capita).¹ In this context, the authors argue that the regression residuals contain information about the unobserved quality of the policy environment and are comparable across countries.² Thus, the benchmark indicator is the residual. The authors use an OLS regression to estimate the regression equation, pooling data from all countries together.

Barajas et al. (2013) follow a similar approach as in Beck et al. (2008). The benchmark level of financial development is predicted for each country at each point in time by estimating a similar equation.³ According to the authors, this would determine a financial possibility frontier, which "is the maximum sustainable depth (e.g., credit or deposit volumes), outreach (e.g., share of population reached), or breadth of a financial system (e.g., diversity of domestic sources of long-term finance) that can be realistically achieved at a given point in time." This frontier is country-specific and is computed for each type of financial service. Then, they define the *Gap* for a financial depth indicator as:

$$Gap_{it} = \widehat{FD}_{it} - FD_{it}$$

where a positive (negative) gap indicates under (over) performance.

A shortcoming of this simple regression-based empirical approach is that the frontier is not estimated with the constraints that underlie the maximum sustainable development a country can achieve. Consequently, the share of countries over- and under-performing are, by construction, 50 percent for the sample, which seems inconsistent with the idea of a frontier.⁴

Čihák et al. (2012) also benchmark financial systems but do so in a nonparametric way. To characterize financial systems, four aspects are studied: depth, access, efficiency and stability. This is done for financial institutions and financial markets (equity and bond markets). Thus, the study presents a 4x2 matrix of financial system characteristics. The choice of variables is based on what past literature has identified as relevant indicators. The criteria to select indicators is country coverage. Each indicator is normalized by the maximum and the minimum of the indicator. This can be interpreted as the percent distance between best and worst practices.

To make fair comparisons, clustering is used to assign similar countries into groups. The Euclidean distance is used to approximate the "similarity" of two countries regarding the four dimensions of financial systems.

¹ The structural variables chosen in the paper are GDP per capita, population size, population density, offshore financial centers dummy, small country dummy, landlocked dummy and time dummies. Regional dummies are also included as a robustness check.

 $^{^{2}}$ It is important to note that unless these "unobserved quality" variables are uncorrelated with the regressors, the estimated coefficients based on the pooled OLS model are likely to be inconsistent. If so, the use of the residuals for policy purposes might be problematic.

³ Controls are very similar to the ones used in Beck et al. (2008).

⁴ However, the shares of countries over- and under-performing vary over time.

$$d(p,q) = \sqrt{\sum_{i=1}^{4} (q_i - p_i)^2}$$

Where p_i and q_i are the values of the *i*-th indicator for country *p* and *q*, respectively. The number of clusters is also relevant; the higher the number of clusters, the higher the similarity among countries within the cluster. However, a very high number of clusters reduces the scope of the benchmarking exercise. Therefore, the authors pick 3, 4, and 5 clusters per variable.

Finally, once the number of clusters is set, the clustering analysis finds an allocation of the world's countries into k clusters in order to minimize the sum of distances for all pairs of countries:

$$\min \sum_{c=1}^k \sum_{\forall p,q \in S_c} d(p,q)$$

where S_c denotes an individual cluster, and p and q represent different countries.

The results are reported for the four clusters, in terms of regions and income groups. One of the main conclusions is that financial systems are multidimensional: a good performance on one indicator does not assure the same on others. A shortcoming of this method is that countries are defined to be similar in terms of financial development indicators, instead of structural characteristics. Therefore, it is not possible to identify what underlies the differences.

The regression approach (from simple OLS to quantile regressions and nonparametric methods) has two main problems. The first is that one cannot decompose the regression residual into pure noise and potential for improvement (inefficiency). The second problem is that the residuals are both positive and negative, with symmetry around zero by construction. If one is interested in assessing the potential for improvement (through policies, for instance) for each country and time period, then a one-sided gap is more directly informative.

Frontier approach

Benchmarking methods based on a frontier approach have been implemented in Assaf (2012); Bogetoft, Heinesen, and Tranæs (2015); Edvardsen and Førsund (2003); Kumbhakar and Lien (2017) among others. They are a combination of two research traditions. One has its origins in management science, mathematical programming, and operations research. This method is called *Data Envelopment Analysis* (DEA). The other research tradition has a more economics and econometrics-oriented background and is referred to as *Stochastic Frontier Analysis* (SFA). Both methods address the basic challenges in any benchmarking exercise, namely (a) defining a performance standard, and (b) evaluating achievements against the established standard. This is done by estimating a frontier function which is the maximum attainable value (the benchmark), and, therefore, departure from the benchmark can be viewed as slack (one-sided potential for improvement).

DEA uses mathematical programming methods to estimate the benchmark (the best practice production frontier) and evaluates the relative efficiency of different entities in comparison with the benchmark. In the DEA literature, these are typically called decision-making units (DMUs), such as firms. SFA mostly uses a parametric function to represent the underlying technology and uses econometric methods to

estimate it. In SFA, the relationship between the inputs used and the output produced is assumed to be stochastic. Then, one advantage of the SFA model over the DEA approach is that deviations from the frontier reflect not only inefficiencies, as in the DEA approach, but also noise in the data. By addressing the stochastic nature of the benchmark, SFA produces inefficiency measures that in principle are not contaminated by the presence of the noise term.

Although SFA was initially developed to estimate productive efficiency (see, e.g., Kumbhakar and Lovell 2000; Kumbhakar, Wang and Horncastle 2015), one can view it as a tool to define benchmarks in many situations. For example, in analyzing health care delivery, the World Health Report (2000) measured and ranked the efficiency of the health systems of 191-member countries (Tandon *et al.* 2000). There, SFA is used to model and estimate the benchmark against which each country is compared and ranked. As in the traditional production function approach, maximizing health output is considered as the objective of a health system, given health expenditure and some other control variables. Based on this notion of health production function, the study judged the health systems for the 191 countries in terms of their efficiency (derived from SFA) in turning health expenditures into health services. In general, SFA can address questions such as the following. By how much a country's educational quality can be improved after controlling for its structural and country-specific characteristics. How much child mortality can be reduced given the resources of a country? How much a country can gain in terms of its growth rate by trade openness?

In summary, SFA estimates a benchmark as a stochastic frontier. This produces two advantages: the estimated inefficiency (gap with respect to the benchmark) is always one-sided and does not include the noise term. We now turn to a detailed description of the SFA methodology.

4. Methodology: Stochastic Frontier as a Benchmark

The basic stochastic frontier model for panel data is the following:

$$y_{it} = \beta_0 + x'_{it}\beta + z'_i\gamma - u_{it} + v_{it}$$

where y_{it} is the indicator variable (usually in logs) for country *i* at time *t*, β_0 is a common intercept, x_{it} is the vector of structural variables; and β is the associated vector of technology parameters to be estimated. The country-specific (time-invariant) variables are denoted by z_i , and γ is the corresponding coefficient vector; v_{it} is a random two-sided iid noise term. Finally, $u_i \ge 0$ is the non-negative one-sided inefficiency term, the gap between the observed indicator and the benchmark (stochastic frontier). The idea of separating the *x* variables from the *z* variables is that the former vary in both *i* and *t* dimensions while the latter is time-invariant. The parameters of the model are estimated by the maximum likelihood (ML) method based on distributional assumptions on the noise and the inefficiency terms.

The dependent variable (y_{it}) is the outcome variable being explained by the covariates $(x_{it} \text{ and } z_i)$. The noise term v_{it} captures the effect of unobserved factors that can affect the outcome variable both positively and negatively. Thus, the regression part of the above equation $y_{it}^* \equiv \beta_0 + x'_{it}\beta + z'_i\gamma + v_{it}$ can be viewed as the stochastic frontier (maximum or minimum value of the outcome variable, given the covariates, depending on the problem).⁵ This frontier defines the benchmark. To allow for the possibility that a micro

⁵ The component without the v term can be viewed as the deterministic frontier.

or macro unit (firm, school, hospital, geographical region, country, etc.) fails to attain the benchmark, we add a one-sided term, which is negative if the problem has a natural maximum (as in, for example, production, investment, wage payment by firms, health care delivery, foreign direct investment, and educational quality for a country) or positive if the problem has a natural minimum (as in cost, crime, pollution, and inflation). The shortfall captured by the one-sided term, u_{it} , can be interpreted as a slack or inefficiency, which shows how much scope of improvement there is for the unit *i* at time *t*. So, in sum, the frontier or the benchmark is the maximum or minimum achievable theoretically, and the gap (slack, inefficiency) shows the potential for improvement.

For our present case, we have a variety of indicators (drivers of economic growth, poverty, and resilience), which are the outcome variables. These are used separately (one at a time) for the model outlined above. In most cases, the benchmark is the maximum value of the outcome variable, and we therefore consider $-u_{it}$ in the model. For other indicators, the benchmark is defined by the minimum possible value of the outcome variable, in which case we adjust the SF model by having $+u_{it}$ instead of $-u_{it}$. The objective is to estimate the gap, defined as the shortfall from the benchmark which is stochastic. That is, if the gap is big for an indicator for a country in a particular year, we can say that it has potential for improvement. Alternatively, one can say that the country has some institutional or policy factors that might be forcing it not to operate it at the benchmark. If for a country i in yeart, $u_{it} = 0$ then, it attains the benchmark and there is no gap between actual and benchmark values. Note that the benchmark is not constant. It varies with x_{it} and z_i which are usually different for different countries. In any event, the gap cannot be both positive and negative, it is always one-sided by construction. And the estimation method in SF takes this one-sidedness into account.

The panel SF model that we discussed above can be extended to accommodate some time-invariant unobserved country-specific institutional or policy environment that can explain the gap between the benchmark and the observed outcome. To accommodate it in the SF model, we decompose the gap as $u_{it} = \eta_i + \tau_{it}$, where both η_i and τ_{it} are non-negative. The η_i part is persistent, while the τ_{it} component is also country-specific but changes with time. The model is further generalized to accommodate random country heterogeneity which is uncorrelated with the x_{it} and z_i variables. One way of explaining this is to think of a country effect c_i that combines the observed and unobserved effects, i.e. $c_i = z'_i \gamma + \alpha_i$, so that the country effects c_i are correlated with the structural variables x_{it} via correlation between the x_{it} and the z_i variables. In other words, the part of country effects that is explained by the variables is correlated with the structural variables. With this, we rewrite the extended SF model as

$$y_{it} = \beta_0 + x'_{it}\beta + c_i - u_{it} + v_{it} = \beta_0 + x'_{it}\beta + z'_i\gamma + \alpha_i - \eta_i - \tau_{it} + v_{it}$$
(1)

Before addressing estimation of the above SF model, we note that if OLS or random effects panel estimators are applied, it is not possible to separate the inefficiency components from the noise and random country-effects, α_i . To show this, we rewrite the above equation as

$$y_{it} = \beta_0^* + x_{it}'\beta + z_i'\gamma + \alpha_i + \varepsilon_{it}$$
⁽²⁾

where $\varepsilon_{it} = [v_{it} - (\tau_{it} - a) - (\eta_i - b)], \beta_0^* = \beta_0 - (a + b)$ and $a = E(\tau_{it}), b = E(\eta_i)$.

We also assume that $E(\alpha_i) = 0$ and $E(v_{it}) = 0$. Note that the above regression is a random-effects (RE) panel model and can be estimated using generalized least squares (GLS). Although the GLS will give consistent estimates of the parameters, the use of the predicted values given by $\beta_0^* + x'_{it}\beta + z'_i\gamma + \alpha_i$ as

the benchmark will have two problems which we already discussed. First, the residual of the above RE regression $(\hat{\varepsilon}_{it})$ will have both positive and negative values, and therefore cannot be viewed as the gap which can be attributed to the policy environment. Second, to estimate the gap and decompose it into persistent and time-varying components, we need to separate the residual from noise and the random country effect.

We consider several special cases of the above model, which we rewrite again,

$$y_{it} = \beta_0 + x'_{it}\beta + z'_i\gamma + \alpha_i - \eta_i - \tau_{it} + v_{it}$$

If we assume that there is no persistent, time-invariant gap, then $\eta_i = 0$; and the model reduces to,

$$y_{it} = \beta_0 + x'_{it}\beta + z'_i\gamma + \alpha_i - \tau_{it} + v_{it}$$

This is popularly known as the true random effects (TRE) model (Greene 2005) and is estimated using the following distributional assumptions: v_{it} is iid normal with zero mean and constant variance, τ_{it} is iid half normal (or exponential) with zero mean and constant variance truncated at zero from the left, and α_i is iid normal with zero mean and constant variance. The drawback of this simplified model is that ignoring the persistent inefficiency component η_i can bias the estimate of inefficiency. That is, one can mistakenly think that inefficiency is τ_{it} whereas the true ineffciency is $\tau_{it} + \eta_i$.

The model proposed by Colombi et al. (2014) and Kumbhakar, Lien and Hardaker (2014), among others, captures both components of inefficiency and separates them from random country effects α_i . In Colombi et al. (2014), the model is estimated in a single step with the distributional assumptions that η_i and τ_{it} are both iid half-normal; and α_i and v_{it} are iid normal. The iid assumptions in Colombi et al. (2014) and Kumbhakar, Lien and Hardaker (2014) are relaxed in Badunenko and Kumbhakar (2017), and Lai and Kumbhakar (2018). Colombi et al. (2014), Badunenko and Kumbhakar (2017), and Lai and Kumbhakar (2018) use a single step ML method to estimate the parameters and the conditional mean (extension of the Jondrow et al. 1982 result) and then obtain both persistent and time-varying inefficiency. The multi-step approach proposed in Kumbhakar, Lien and Hardaker (2014) is used in this paper for its simplicity in estimation.

4.1 Estimation of the SF model

Here, we first describe identification of all the parameters in the SF model. For this, we rewrite the model in (1) as,

$$y_{it} = \beta_0^* + x_{it}'\beta + z_i'\gamma + [\alpha_i - \tilde{\eta}_i] + [\nu_{it} - \tilde{\tau}_{it}] \equiv \beta_0^* + x_{it}'\beta + z_i'\gamma + \zeta_i + \chi_{it}$$
(3)

where, $\zeta_i = \alpha_i - \tilde{\eta}_i \equiv \alpha_i - [\eta_i - E(\eta_i)], \quad \chi_{it} = v_{it} - \tilde{\tau}_{it} \equiv v_{it} - [\tau_{it} - E(\tau_{it})], \text{ and } \beta_0^* = \beta_0 - (E(\tau_{it}) + E(\eta_i)).$

In this formulation, ζ_i and χ_{it} have zero mean and constant variance. Now we show, following Kumbhakar, Lien and Hardaker (2014), how the parameters of (3) can be estimated.

Step 1: Since (3) is the familiar RE panel data model, one can use a standard RE panel regression to estimate β and γ consistently. This procedure also gives the predicted values of ζ_i and χ_{it} . One can stop here, if the interest lies in estimating only the β and γ parameters. For estimation (prediction) of τ_{it} and η_i , we consider the steps below.

Step 2: Prediction of τ_{it} . For this we need to estimate the parameters in τ_{it} and v_{it} . To do so we write:⁶

$$\chi_{it} = E(\tau_{it}) - \tau_{it} + v_{it} = a - \tau_{it} + v_{it}$$
(4)

which can be viewed as a SF model (with just an intercept). Recall that $a = E(\tau_{it})$ so that 'a' is not a separate parameter under the assumption τ_{it} is $N^+(0, \sigma_\tau^2)$, $E(\tau_{it}) = a = \sqrt{2/\pi} \sigma_\tau$ which is a constant. Thus, the parameters of (4) are σ_τ and σ_v , which can be identified from the second and third moments of χ_{it} , assuming that v_{it} is $N(0, \sigma_v^2)$. Since the σ_τ and σ_v parameters can be identified, we use the SF approach which uses the above distributional assumptions on τ and v.

Note that our primary interest is to predict τ_{ii} . For this we use the Jondrow et al. (1982) formula, which gives an estimate of τ_{it} , conditional on the composed error term $(v_{it} - \tau_{it})$ That is, $\hat{\tau}_{it} = E\{\tau_{it} | (v_{it} - \tau_{it})\}$. In practice $(v_{it} - \tau_{it})$ is the residual from the SF model in (4).

Step 3: To predict η_i , we need to make sure that η_i can be separated from α_i . For this, first we show that the parameters in η_i and α_i can be identified. Since

$$\zeta_i = \alpha_i - \eta_i + E(\eta_i) = \alpha_i - \eta_i + b \tag{5}$$

where $E(\eta_i) = b = \sqrt{(2/\pi)}\sigma_{\eta}$, we can use the second and third moments of ζ_i (as argued before) to identify the parameters in η_i and α_i , assuming that α_i is $N(0, \sigma_{\alpha}^2)$.

To predict η_i we treat (5) as a standard cross-sectional SF model, estimation of which will give predicted values of η_i (thereby separating it from α_i), using the Jondrow et al. (1982) procedure, discussed below.

4.2 Prediction of persistent and time-varying gap in the indicators

Here we provide the details about the Jondrow et al. (1982) formula in predicting both τ_{it} and η_i .

Under the distributional assumption $\alpha_i \sim iid N(0, \sigma_{\alpha}^2)$ and $\eta_i \sim iid N^+(0, \sigma_{\eta}^2)$, $\eta_i \ge 0$ (i.e. η_i is distributed as half-normal), the distribution of η_i conditional on $(\alpha_i - \eta_i)$ is truncated normal. The mean of this conditional distribution is used as a predictor of η_i (see Kumbhakar, Wang, and Horncastle 2015). That is,

$$\hat{\eta}_i = E(\eta_i | (\alpha_i - \eta_i)) = \mu_i^* + \{\sigma^* \phi(\mu_i^* / \sigma^*)\} / \{\Phi(\mu_i^* / \sigma^*)\}$$
(6)

where $\mu_i^* = \{-\sigma_\eta^2(\alpha_i - \eta_i)\}/\{\sigma_\eta^2 + \sigma_\alpha^2\}$ and $\sigma^* = \sqrt{\sigma_\eta^2 \sigma_\alpha^2/(\sigma_\eta^2 + \sigma_\alpha^2)}$.

In implementing this formula, we replace $(\alpha_i - \eta_i)$ by its estimate from the SF model in Step 3. Similarly, under the distributional assumption that $v_{it} \sim iid N(0, \sigma_v^2)$ and $\tau_{it} \sim iid N^+(0, \sigma_\tau^2)$ (i.e. τ_{it} is distributed as half-normal), the distribution of τ_{it} conditional on $(v_{it} - \tau_{it})$ is truncated normal. The mean of this conditional distribution is used as a predictor of τ_{it} . The formula is exactly the same as in (6),

⁶ We ignore the difference between the true and predicted values of β and γ (which is standard practice in any two- or multi-step procedure in econometrics).

$$\hat{\tau}_{it} = E(\tau_{it} | (v_{it} - \tau_{it})) = \mu_{it}^{\#} + \{\sigma^{\#}\phi(\mu_{it}^{\#}/\sigma^{\#})\}/\{\Phi(\mu_{it}^{\#}/\sigma^{\#})\} \text{ where } \mu_{it}^{\#} = \{-\sigma_{u}^{2}(\tau_{it} - v_{it})\}/\{\sigma_{\tau}^{2} + \sigma_{v}^{2}\}$$

and $\sigma^{\#} = \sqrt{\sigma_{\tau}^2 \sigma_{\nu}^2 / (\sigma_{\tau}^2 + \sigma_{\nu}^2)}$. In implementing this formula, we replace $\tau_{it} - \nu_{it}$ by its estimate from the SF model in Step 2. The overall gap is then predicted by summing the predicted values of η_i and τ_{it} .

Almost all the SF models are specified in log (or rates of change) form. In these formulations, inefficiency (shortfall from the potential outcome) can be interpreted as the percentage (when multiplied by 100) shortfall in the outcome variable, especially when inefficiency is small. However, the exact percentage shortfall is $1 - \exp(-\text{inefficiency})$, where $\exp(-\text{inefficiency})$ is the measure of efficiency. Since we have two components of inefficiency is exp $(-\eta_i)$ and time-varying efficiency is $\exp(-\tau_{it})$. Then overall technical efficiency (OTE) is the product of the persistent and time-varying efficiency. Note that the overall technical inefficiency and OTE are closely related. For small values of inefficiency, the overall technical inefficiency ≈ 1 - OTE.

For reporting purposes, for each indicator one can use either the mean of overall inefficiency for each country, which is $\bar{u}_i = \eta_i + \bar{\tau}_i$, or the average of OTE for each country. Either the average inefficiency or efficiency scores can be used to rank countries for each indicator. Note that the ranking shows the scope for improvement for each country and indicator. The inefficiency scores show potential for improvement for the indicator in question and not the value of the indicator, which might confuse some readers. We clarify this issue using a graph, which is used for illustration purposes.

Since the model we estimate for each indicator is $y_{it} = \beta_0 + x'_{it}\beta + z'_i\gamma + \alpha_i - \eta_i - \tau_{it} + v_{it}$, the country average is $\bar{y}_i = \beta_0 + \bar{x}'_i\beta + z'_i\gamma + \alpha_i - \eta_i - \bar{\tau}_i$ assuming $\bar{v}_i = 0$ since $E(v_{it}) = 0 \forall i$. If we denote $\beta_0 + \bar{x}'_i\beta + z'_i\gamma + \alpha_i by m_i$, $\bar{y}_i = m_i - \bar{u}_i$ where $\bar{u}_i = \eta_i + \bar{\tau}_i$. Now we use the information on \bar{y}_i and m_i in Figure 1 and measure the difference between them as the potential for improvement.

To be more specific, let us assume that \overline{y}_i is educational quality, measured by the PISA reading performance, and the points A and B in figure 1 represent \overline{y}_i for two countries, say Vietnam and the Republic of Korea. The points C and D represent their respective *m* values, that is, their own potential. Clearly both actual and potential values for Korea are higher than those of Vietnam. However, Vietnam is much closer to its frontier value (distance AC < BD) and therefore has smaller scope for improvement. Thus, if we rank the countries in terms of their improvement potential (efficiency), Vietnam will be ranked higher than Korea in terms of educational quality. This does not mean, however, that educational quality in Korea is lower than in Vietnam. Our ranking is in terms of efficiency, not in terms of the raw indicator. We discuss this in detail for various indicators in the results section.

5. Data

5.1 The indicators (y_{it})

Following the illustration presented in the conceptual framework, we draw on the theoretical and empirical literatures on economic growth, poverty reduction, and resilience to identify some variables that can be used as indicators of social and economic development (Foa 2013; Loayza, Fajnzylber, and Calderón 2005; World Bank 2013).

Initially, we built a database for 146 indicators covering 207 countries for the period 1950-2014. However, for practical reasons, we narrowed the number of indicators down to 10 indicators and the period of study

to 2005-2014. This was done by applying the following selection criteria: (i) the relevance of the variables found in the empirical evidence; (ii) good cross-country and cross-time coverage. Table 1 gives the list of these indicators and related summary statistics. The sample covers, on average, 152 countries with variation across indicators. The coverage for 7 of the 10 indicators ranges from 144 to 203 countries, while for the remaining indicators (educational quality, old-age pension, and sanitation facilities) the coverage ranges from 66 to 81 countries. We decided to benchmark each indicator separately for clarity and to avoid arbitrariness regarding grouping them together.

In the econometric model presented in the methodological section, each of these 10 variables represents the dependent or "left-hand side" variable of the regression equation.

5.2 The structural variables $(x_{it} \text{ and } z_i)$

As argued before, in order to improve comparability of performance across countries, it is necessary to control for countries' endowments, structural, or predetermined conditions. Table 2 reports the list of variables we selected, along with their summary statistics. Note that we include a 10 year-lag of the GDP per capita in this group to help account for the countries' predetermined conditions. These are the explanatory or "right-hand-side" variables in the SF model outlined in the methodological section. Table 3 reports pairwise correlations between all variables. The degree of correlation varies across indicators, but we conclude that the correlations between indicators and predetermined conditions are not negligible and the correlation among predetermined conditions is not so high as to make any of them irrelevant.

6. Illustrative Results

We are interested in assessing the potential for improvement in various development indicators for a large group of countries. The SF model gives us estimates of persistent and time-varying (in)efficiency (and its confidence intervals) for each indicator, country, and year. The estimated (in)efficiency levels can be used to rank countries, measure the scope for improvement, and identify the countries that are close to the efficiency frontier (the benchmark).

In the appendix, we report detailed estimates by indicator and country. We present the results as they are introduced in the methodological section. For each indicator, we show the country's time-invariant inefficiency (η_i), time-varying inefficiency components in the first and last year of the period (τ_{i0} and τ_{iT}), and the percentage change in inefficiency between the final and the initial years. The amount of information in the appendix can be overwhelming. To illustrate the results, in what follows we highlight some comparisons across countries and regions.

For each of the 10 indicators, we compute the overall technical efficiency (OTE) for each country and year. The OTE is the ratio of the observed level of an indicator to the maximum possible (frontier) that could be achieved given a country's structural characteristics. For example, if the OTE for an indicator is 0.95, then we can say that the country in question has attained 95% of its potential in that indicator. Countries at the top of the efficiency ranking are countries closer to their own frontier and therefore have smaller scope for improvement. As explained in the methodological section, a ranking of countries in terms of their efficiency could differ from a ranking based on their raw indicator. Table 4 reports the correlations between the efficiency ranking and the raw indicator ranking. The correlation coefficient is low for the access to finance index; high for educational quality, income inequality, and fiscal balance;

and medium for the rest. The lower the correlation, the more informational value can be obtained from the SF approach to determine efficiency with respect to own benchmark.

In Table 5, we report the top 5 and bottom 5 countries according to OTE for each indicator. For illustration, let's consider some specific examples. For access to finance, the SF model places Mongolia at the top 1, while the raw indicator places Norway as the best. The raw indicator is right in absolute terms, since almost 100% of the population in Norway has an account at a financial institution. However, Mongolia appears to be the country that is doing its best considering its structural characteristics: 85% of the population in Mongolia has an account at a financial institution, which is outstanding considering that Mongolia's GDP per capita is only 2% of Norway's and that Mongolia is the second country with lowest population density. Mongolia's high OTE and ranking does not mean that it is better than, say, Norway. Rather, it tells us that given its structural characteristics, Mongolia is operating close to the frontier and does not have much slack (scope for improvement) regarding financial inclusion.

Consider another example. While for educational quality there is high correlation between the OTE and the raw indicator, inspection of the SF outcomes reveals some surprising results. The SF model places Vietnam as second while Korea is ranked seventh. However, according to the raw PISA indicators for reading performance, this second position is occupied by Korea, while Vietnam is number 17. The SF model tells us that Vietnam has been more efficient in reaching its frontier for educational quality considering that its overall level of development is way below Korea – Vietnam's GDP per capita is only about 5% of Korea's GDP per capita. Note again that we are not comparing the performance of one country with another; rather, we are comparing each country with its potential.

A third example relates to the indicator of financial depth. The raw indicator suggests that the United States is top 2 in the world with a financial depth ratio of 190% of GDP, while Fiji is placed number 39 with a financial depth ratio of 79% of GDP. In contrast, the SF model places Fiji as the top 2. That is, considering that Fiji is a small state with GDP per capita only 7% that of the United States, Fiji is operating close to its potential.

The ranking comparisons can be done for different country groupings. These comparisons may add some insight regarding a country's OTE relative to its peers. For instance, Table 6 presents top 5 and bottom 5 countries for each indicator by geographic location. Alternative groupings –by income level, for example—are also possible.

Next, we present a broad perspective on where countries stand regarding their OTE for each indicator. We do so by showing a color-coded world map for each indicator. We group countries into five categories according to OTE (high, medium-high, medium, medium-low, and low) and assign a color for each category. Figure 2 presents this collection of world maps, one for each indicator. Let's consider a couple of examples. The measles immunization map shows that countries with more scope for improvement are concentrated in Africa and South Asia. The same pattern is observed for life expectancy. The income inequality map shows that countries with more scope for improvement are Honduras, Colombia, Guatemala and Brazil. While in Sub-Saharan, the countries with more scope for improvement are south Africa, Eswatini, Lesotho, and Rwanda.

Not only individual countries but also groups of countries can be compared using the outcomes from the SF approach. One possibility is to explore how particular groups of countries fare regarding their average

level and within-group diversity. As an example, Table 7 presents OTE means and standard deviations by geographic region for each of the indicators. Let's consider a few comparisons. Regarding life expectancy, Europe and Central Asia is the region that shows the highest average and lowest dispersion in OTE, while Sub-Saharan Africa is at the other end of the spectrum, with the lowest average and highest standard deviation. Knowing these regions' levels of development, this result may not be very surprising. More surprising may be the similarity in average OTE across all regions regarding fiscal balance, although with differences regarding within-region dispersion. Also surprising may be the result regarding measles immunization, for which the Americas is the region with the highest average and lowest dispersion in OTE. This good regional performance contrasts with its poor performance regarding other indicators, such as trade openness or income inequality.

So far, we have concentrated the discussion on overall technical efficiency (OTE). The Stochastic Frontier approach allows for separation of persistent and time-varying components. While persistent components are associated with longer-run factors requiring deeper reforms to change, time-varying components are linked to shorter-run developments. As mentioned before, these are presented in the Appendix Tables, following the way they are introduced in the methodological section. For illustration, consider the following example applied to access to finance. For Australia, the persistent component of *inefficiency* is 35.1% and the time-varying component of inefficiency increased from 8.8% to 18.8%. The country worsened over the period considered, with the overall potential for improvement for Australia rising from 43.9% (35.1% + 8.8%) in the initial year to 53.9% (35.1% + 18.8%) in the final year. In contrast, for Indonesia, persistent inefficiency at 60.4% is higher than Australia's, but Indonesia's time-varying component went down from 26.4% to 7.7%, signaling an improvement over time.

7. Conclusion

To assess a country's performance in terms of a relevant set of development indicators, we need a benchmark against which these indicators can be compared. If the benchmark is measured as a feasible frontier, then departure from the benchmark can be viewed as inefficiency, slack, or potential for improvement. This paper focuses on international benchmarking for assessing a country's realistic potential for improvement on various social and economic dimensions.

We use the stochastic frontier (SF) approach to estimate a country-, time-, and indicator-specific benchmark and (one-sided) inefficiency. Our approach contrasts with the literature that compare countries by looking at raw indicators without taking into account the structural endowments or predetermined conditions that constrain the maximum performance that countries can achieve in a policy-relevant horizon. The SF approach also improves on the literature that uses OLS regression residuals to measure performance. Although the residuals can give some idea about a country's performance, they cannot be interpreted as inefficiency because they are mixed with noise and can take both positive and negative values.

To illustrate the SF methodology, we apply it to 10 indicators of economic and social performance, using panel data of 142 countries for the period 2005-2014. We compute benchmarks, as well as persistent and time-varying inefficiency measures. To facilitate the discussion of results, we introduce the concept of overall technical efficiency (OTE), the inverse of inefficiency. Not surprisingly, we find that countries' overall technical efficiency varies across indicators, with no country or region dominating the rest. More interestingly, we find that the potential for improvement does not follow a simple relationship with

economic development, with some lower-income countries being closer to their own feasible frontier than other more advanced countries. This result does not imply that developing countries do not have much to make progress towards in the long run: they do, but their realistic potential for improvement is limited by their structural or predetermined conditions in the short term.

One caveat on our study is that we have used a homogeneous set of structural or predetermined conditions across indicators. We have done so for simplicity, convenience, and comparability. The SF approach presented in this paper can be extended and improved if one focuses on a smaller set of indicators, selecting for each of them a more appropriate set of structural endowments or predetermined conditions. The SF application can also be improved by using distribution functions (e.g., exponential vs. half-normal) and variations of the econometric model that are more appropriate for specific indicators. Finally, if detailed information is available, the model can be extended to include variables that can possibly explain why some countries are more inefficient than others.

References

Anell, Anders and Michael Willis, Michael, 2000. "International comparison of health care systems using resource profiles" Bulletin of World Health Organization.

Assaf, A. Geroge, 2012. "Benchmarking the Asia Pacific tourism industry: A Bayesian combination of DEA and stochastic frontier" Tourism Management, Volume 33, Issue 5, October 2012, Pages 1122-1127.

Badunenko, Oleg and Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?" European Journal of Operational Research, Volume 260, Issue 2, 16 July 2017, Pages 789-803.

Barajas, Adolfo and Beck, Thorsten and Dabla-Norris, Era and Yousefi, Reza, 2013. "Too cold, too hot, or, just right? Assessing financial sector development across the globe." International Monetary Fund, Working Paper No. 13/81.

Barro, Robert J. and Sala-i-Martin, Xavier, 2004 "Economic Growth" 2nd Edition, The MIT Press, Cambridge.

Beck, Thorsten and Feyen, Erik and Ize, Alain and Moizeszowicz, Florenci, 2008. "Benchmarking Financial Development." World Bank Policy Research Working Paper Series No. 4638. Washington, DC

Bogetoft, Peter and Heinesen, Eskil and Tranæsb, Torben, 2015. "The efficiency of educational production: A comparison of the Nordic countries with other OECD countries" Economic Modelling, Volume 50, November 2015, Pages 310-321

Čihák, Martin and Demirguc-Kunt, Asli and Feyen, Erik and Levine, Ross, 2012. "Benchmarking Financial Systems Around the World." World Bank Policy Research Working Paper No. 6175.

Colombi, Roberto and Kumbhakar, Subal and Martini, Gianmaria and Vittadini, Giorgio, 2014. "Closedskew normality in stochastic frontiers with individual effects and long/short-run efficiency." Journal of Productivity Analysis, 42(2), 123-136.

Edvardsen, Dag Fjeld and Førsund, Finn R., 2003. "International benchmarking of electricity distribution utilities" Resource and Energy Economics, Volume 25, Issue 4, October 2003, Pages 353-371

Feenstra, Robert C., and Inklaar, Robert and Timmer, Marcel P., 2015. "The Next Generation of the Penn World Table" American Economic Review, 105(10), 3150-3182.

Felipe, Jesus and Usui, Noroi 2008. "Rethinking the Growth Diagnostics Approach: Questions from the Practitioner" ADB Economics, Working Paper Series, No. 132.

Foa, Roberto, 2013. "Household Risk Preparation Indices—Construction and Diagnostics." World Bank, Washington, DC.

Greene, William, 2005. "Reconsidering Heterogeneity in Panel Data Estimators of the Stochastic Frontier Model" Journal of Econometrics, June 2005, Vol.126(2), pp.269-303.

Hausmann, Ricardo and Rodrik, Dani and Velasco, Andres, 2008 "Growth Diagnostics" in J. Stiglitz and N. Serra, eds., The Washington Consensus Reconsidered: Towards a New Global Governance, Oxford University Press, NewYork, 2008.

Intenational Monetry Fund (IMF), 2014 "World Economic Outlook" International Monetary Fund, Washington, D.C.

Jondrow, James and Lovell, Ca and Materov, Ivan and Schmidt, Peter, 1982. "On the Estimation of Technical Inefficiency in The Stochastic Frontier Production Function Model." Journal of Econometrics. 19. 233-238.

Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, 2011. "The Worldwide Governance Indicators: Methodology and Analytical Issues." Hague Journal on the Rule of Law, 3(2), 220-246. doi:10.1017/S1876404511200046

Kayser, Mark A. and Peress, Michael, 2012. "Benchmarking across Borders: Electoral Accountability and the Necessity of Comparison" American Political Science Review, Volume 106, Issue 3August 2012, pp. 661-684.

King, Gary and Honaker, James and Joseph, Anne and Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation." American Political Science Review, 95, Pp. 49–69. Copy at https://j.mp/2oOrtGs

Kumbhakar, Subal C. and Lovell, C.A. Knox, 2000. "Stochastic Frontier Analysis." Cambridge University Press.

Kumbhakar, Subal C. and Lien, Gudbrand and Hardaker, J. Brian, 2014. "Technical efficiency in competing panel data models: A study of Norwegian grain farming," Journal of Productivity Analysis 41: 321–337.

Kumbhakar, Subal C. and Wang, Hung-Jen, and Horncastle, Alan P., 2015. "A practitioner's guide to stochastic frontier analysis using Stata." Cambridge University Press.

Kumbhakar, Subal C. and Lien, Gudbrand, 2017. "Yardstick Regulation of Electricity Distribution – Disentangling Short-run and Long-run Inefficiencies," Energy Journal 38:17-37.

Lai, Hung-pin and Kumbhakar, Subal C., 2018. "Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency" Economics Letters, Volume 162, January 2018, Pages 5-9.

Loayza, Norman and Fajnzylber, Pablo and Calderón, César, 2005. "Economic Growth in Latin America and the Caribbean: Stylized Facts, Explanations, and Forecasts." Washington, DC: World Bank.

Organization for Economic Co-operation and Development (OECD), 2020. "Reading performance (PISA) (indicator)." doi: 10.1787/79913c69-en

Ravallion, Martin, 2012. "Benchmarking Global Poverty Reduction" World Bank, Policy Research Working Paper 6205.

, 2016. "Toward better global poverty measures" The Journal of Economic Inequality, 2016, Vol.14(2), pp.227-248.

Staddon, Anthony and Toornstra, Dick, 2016. "Benchmarking for Democratic Parliaments" in Benchmarking and Self-Assessment for Parliaments, World Bank, Pages 127-137.

Tandon, Ajay and Murray, Christopher J.L. and Lauer, Jeremy A. and Evans, David B. 2000 "Measuring Overall Health System Performance for 191 Countries" GPE Discussion Paper Series: No. 30.

Viberg, Nina and Forsberg, Birger C. and Borowitz, Michael and Moline, Roger, 2013. "International comparisons of waiting times in health care – Limitations and prospects" Health Policy, Volume 112, Issues 1–2, September 2013, Pages 53-61.

WHO (World Health Organization), 2000. "The world health report 2000 - Health systems: improving performance"

World Bank, "Health Nutrition and Population Statistics" Washington, DC: World Bank.

, "World Development Indicators," Washington, DC: World Bank.

_____, "Global Financial Inclusion (Global Findex) Database." Washington, DC: World Bank

_____, 2013. "World Development Report 2014: Risk and Opportunity." Washington, DC: World Bank.

, 2015. "A Measured Approach to Ending Poverty and Boosting Shared Prosperity: Concepts, Data, and the Twin Goals." Policy Research Report. Washington, DC: World Bank.

Yepes, Tito and Pierce, Justin and Foster, Vivian, 2009. "Making Sense of Africa's Infrastructure Endowment: A Benchmarking Approach" World Bank, Policy Research Working Paper 4912.

Table 1: Selected Indicators, Definitions, and Summary Statistics

Variable	Definition	Mean	SD	Min	Max	Obs	Years	Source
Macroeconomy			-	-	-	-		
Trade openness	Sum of exports and imports of goods and services to GDP ratio.	96.2	61.8	0.2	860.8	1,894	2005- 2014	World Development Indicators
Financial depth	Domestic credit to private sector refers to financial resources provided to the private sector by financial corporations as a percent of GDP.	52.1	45.3	0.4	312.1	1,753	2005- 2014	World Development Indicators
Fiscal balance	General government net lending/borrowing as a percent of GDP. It is calculated as revenue minus total expenditure.	0.1	6.8	-40.3	123.5	1,820	2005- 2014	World Economic Outlook
Human Capital								
Measles immunization	Child immunization, measles, measures the percentage of children ages 12-23 months who received the measles vaccination before 12 months or at any time before the survey.	87.0	13.9	22.0	99.0	1,903	2005- 2014	Health, Nutrition and Population
Sanitation facilities	Access to improved sanitation facilities refers to the percentage of the population using improved sanitation facilities.	64.2	29.1	5.5	100.0	808	2005- 2014	World Development Indicators
Life expectancy	Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.	70.2	8.8	43.6	85.4	1,992	2005- 2014	World Development Indicators
Educational quality	PISA's reading performance score measures the capacity to understand, use and reflect on written texts.	462.9	51.5	284.7	569.6	634	2005- 2014	OECD
Social Inclusion								
Access to finance	The percentage of respondents, as a percentage of total population 15 years or older, who report having an account (by themselves or together with someone else) at a bank or another type of financial institution or report personally using a mobile money service in the past 12 months.	49.6	32.2	0.4	100.0	284	2011 & 2014	Global Findex
Old-age pension	Active contributors to pension schemes as a percentage of working-age population.	27.5	32.7	0.0	481.6	313	2005- 2013	International Labour Organization
Income inequality	Measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution.	36.8	8.6	16.6	64.8	736	2005- 2014	World Development Indicators

Variable	Definition	Mean	SD	Min	Max	Obs	Years	Source
Population	All residents regardless of legal status or citizenship in millions.	32	128	0.01	1360	2,127	2005- 2014	Penn World Table
Population density	Total population divided by land area in square kilometers.	391	1850	0.14	19073	2,120	2005- 2014	World Development Indicators
Offshore dummy	1 if a country is an offshore center, where the bulk of financial sector activity is offshore on both sides of the balance sheet, where the transactions are initiated elsewhere, and where the majority of the institutions involved are controlled by non-residents.	0.2	0.4	0	1	2,130	2005- 2014	IMF
Small states dummy	1 if a country has less than 1,500,000 inhabitants.	0.3	0.5	0	1	2,130	2005- 2014	World Development Indicators
Landlocked countries	1 if the country is entirely enclosed by land, or whose only coastlines lie on closed seas.	0.2	0.4	0	1	2,130	2005- 2014	World Development Indicators
GDP per capita (level)	GDP per capita is gross domestic product divided population in constant 2010 U.S. dollars.	12	18	0.14	159	1,904	2005- 2014	World Development Indicators

Table 2: Selected Predetermined Conditions, Definitions, and Summary Statistics

Table 3: Correlations between Indicators and Predetermined Conditions

Variable	GDP per capita	Population	Density	Landlocked	Small	Offshore
Trade openness	0.27	-0.16	0.29	-0.02	0.28	0.34
Financial depth	0.66	0.12	0.12	-0.22	0.06	0.27
Fiscal balance	0.11	-0.04	0.02	-0.03	0.01	0.03
Measles immunization	0.26	-0.01	0.09	-0.06	0.05	0.15
Sanitation facilities	0.60	-0.06	0.13	0.08	0.17	0.14
Life expectancy	0.59	0.01	0.19	-0.29	0.15	0.29
Educational quality	0.54	0.14	0.19	-0.13	0.02	0.13
Access to finance	0.74	0.03	0.21	-0.24	0.17	0.24
Old-age pension	0.38	-0.05	0.07	-0.14	0.21	0.32
Income inequality	-0.43	0.11	-0.17	-0.13	-0.13	0.08

Indicator	Average Score	Ranking
Trade openness	75.9	71.6
Financial depth	73.7	69.1
Fiscal balance	91.5	87.3
Measles immunization	89.0	77.3
Sanitation facilities	90.3	72.8
Life expectancy	83.9	67.6
Educational quality	89.6	88.4
Access to finance	59.1	35.2
Old-age pension	69.2	65.1
Income inequality	-91.7	92.2

 Table 4: Correlation between Overall Technical Efficiency (OTE) and Raw Indicator –

 Average Score and Ranking

Indicator	Top 5	Bottom 5	Indicator	Top 5	Bottom 5
	Hong Kong SAR, China	Myanmar		Iceland	Nigeria
	Singapore	Bermuda		Greenland	Sierra Leone
Trade openness	Vietnam	Japan	Bottom 5IndicatorTop 5AyanmarAyanmarIcelandBermudaAgaanGreenlandapanLife expectancyGreenlandBrazilCanadaSan MarinoBrazilSan MarinoSan MarinoCongo, Rep.Educational qualityChinaEqua. GuineaPeducational qualityFinlandEducational qualityKenyaSan MarinoSongo, Dem. Rep.ChinaCanadaCongo, Dem. Rep.MongoliaKenyaGuineaMongoliaKenyaSuineaKenyaSri LankaSuvaluKenyaSri LankaSuvaluNorth MacedoniaNorth MacedoniaSuipariaOld-age pensionMoldovaLatviaLatviaChinaChinaYarineMoldovaLatviaLatviaChinaCongo Kong SAR, ChinaIncome 	Australia	Côte d'Ivoire
	Liberia	Brazil		Canada	Eswatini
	Thailand	United States		San Marino	Lesotho
	South Africa	Iraq		China	Kyrgyz Rep.
	Fiji	Congo, Rep.		Vietnam	Qatar
Financial depth	Iceland	Equa. Guinea	Educational quality	Finland	Peru
depth	China	Congo, Dem. Rep.	quanty	Estonia	Panama
	Vietnam	Guinea		Canada	Macedonia, FYR
	Kuwait	Eritrea		Mongolia	Turkmenistan
	Brunei Darussalam	Tuvalu		Kenya	Niger
Fiscal balance	Qatar	Botswana	Access to finance	Sri Lanka	Yemen, Rep.
	Congo, Rep.	Kiribati		Rwanda	Iraq
	Norway	Libya		North Macedonia	Guinea
	Mongolia	Chad		Ukraine	Angola
	Guyana	Nigeria		Moldova	Lao PDR
Measles	Kyrgyz Rep.	Equatorial Guinea	Old-age	Latvia	Oman
Immunization	Eritrea	Central African Rep.	pension	China	Bangladesh
	Turkmenistan	Vanuatu		Belize	El Salvador
	Greenland	Tuvalu		Azerbaijan	South Africa
	Latvia	Niger		Algeria	Eswatini
Sanitation facilities	Belarus	Hong Kong SAR, China	Income inequality	Ukraine	Lesotho
	Jordan	Venezuela, RB		Timor-Leste	Rwanda
	Kuwait	Colombia		Belarus	Namibia

 Table 5: Top 5 and Bottom 5 Countries for Each Indicator

Region	Ame	ericas	East & S	outh Asia	Europe & C	Central Asia	Middle Eas Afr	st & North ica	Sub-Saha	ran Africa
Indicator	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5
	Honduras	Bermuda	Hong Kong SAR, China	Myanmar	Luxembourg	Greece	Malta	Israel	Liberia	Central African Rep.
Tuodo	Guyana	Brazil	Singapore	Japan	Belarus	Italy	Jordan	Iran, Islamic Rep.	Congo, Rep.	Eritrea
openness	Panama	United States	Vietnam	Australia	Kyrgyz Rep.	Armenia	United Arab Emirates	Qatar	Angola	Rwanda
	Nicaragua	Argentina	Thailand	Guam	Ukraine	Kosovo	Tunisia	Kuwait	Mauritania	Burundi
	Paraguay	Cuba	Malaysia	Tonga	Belgium	Norway	Libya	Egypt, Arab Rep.	Mozambique	Sudan
	Canada	Argentina	Fiji	Afghanistan	Iceland	Belgium	Jordan	Iraq	South Africa	Congo, Rep.
	Guyana	Uruguay	China	Myanmar	Cyprus	Azerbaijan	Tunisia	Yemen, Rep.	Namibia	Equa Guinea
Financial	United States	Venezuela, RB	Vietnam	Macao	Estonia	Turkey	Morocco	Libya	São Tomé and Príncipe	Congo, Dem. Rep.
ueptii	Chile	Mexico	Mongolia	Brunei Darussalam	Montenegro	Romania	Djibouti	Qatar	Cabo Verde	Guinea
	Bolivia	Dominican Rep.	Thailand	Singapore	Portugal	Kyrgyz Rep.	Iran, Islamic Rep.	AfricaTop 5Bottom 5Top 5BcIaltaIsraelLiberiaCen AfriIaltaIsraelLiberiaCen AfriordanIslamic Rep.Congo, Rep.Erith Reith MauritaniaInited Arab miratesQatarAngolaRwa'unisiaKuwaitMauritaniaBur MozambiqueSudaibyaEgypt, Arab Rep.MozambiqueSudaordanIraqSouth AfricaCon and PríncipeCon Rep'unisiaYemen, Rep.NamibiaEqu Arab Rep.Con and Príncipe'jiboutiQatarCabo VerdeGuin ann, United ArabEthiopiaCha Ethiopia'ann,United ArabEthiopiaCha EmiratesCongoErith South Africa'uwaitLibyaCongoErith annCha Egypt, Arab Rep.SeychellesBotsJuited Arab miratesJordanGabonCab andCabo andCabo andOmanYemen, Rep.Equa. GuineaGha Arab Rep.GuineaGha GuineaJuited Arab miratesIraqEritreaCha GuineaCha Equa. GhaOmanYemen, Rep.Gambia, The Arab Rep.Cen GuineaCha Equa. GhaOmanYemen, Rep.Gambia, The AfriCen AfriOmanYemen, Rep.Gambia, The Cen AfriCen AfriOmanLebanonSenegal.	Chad	
	Jamaica	Venezuela	Brunei Darussalam	Tuvalu	Norway	Ireland	Kuwait	Libya	Congo	Eritrea
	St. Kitts and Nevis	United States	Singapore	Kiribati	Azerbaijan	United Kingdom	Qatar	Egypt, Arab Rep.	Seychelles	Botswana
Fiscal balance	Trinidad and Tobago	Antigua and Barbuda	Solomon Islands	Japan	Uzbekistan	Spain	United Arab Emirates	Jordan	Gabon	Cabo Verde
Trade openness Financial depth Fiscal balance Measles immunization Sanitation facilities Source: Based	Bolivia	Honduras	Philippines	Australia	Kazakhstan	Portugal	Saudi Arabia	Djibouti	Comoros	São Tomé and Príncipe
	Peru	Guyana	Tonga	Mongolia	Belarus	Greece	Oman	Yemen, Rep.	Equa. Guinea	Ghana
	Guyana	Haiti	Mongolia	Vanuatu	Kyrgyz Rep.	San Marino	Libya	Iraq	Rep. Seychelles B 1 Gabon C ati Comoros Si ai n, Equa. Guinea G Eritrea C	Chad
	Nicaragua	Barbados	Bhutan	Lao PDR	Turkmenistan	Austria	Morocco	Lebanon	Botswana	Nigeria
Measles immunization	Belize	Dominican Rep.	Sri Lanka	Samoa	Kazakhstan	United Kingdom	Jordan	Malta	Tanzania	Equa. Guinea
	Bolivia	Venezuela, RB	Solomon Islands	Papua New Guinea	Uzbekistan	Switzerland	Tunisia	Yemen, Rep.	Gambia, The	Central African Rep.
	Cuba	United States	Fiji	Pakistan	Belarus	Denmark	Oman	Djibouti	Rwanda	Ethiopia
	Uruguay	Venezuela, RB	Malaysia	Tuvalu	Greenland	Turkey	Jordan	Lebanon	Senegal	
	Canada	Colombia	New Zealand	Hong Kong SAR, China	Latvia	Bosnia and Herzegovina	Kuwait	Algeria	Niger	· · · · · · · · · · · · · · · · · · ·
Sanitation facilities	Chile	Bolivia	Singapore	Palau	Belarus	Serbia	United Arab Emirates	Iraq	·	· · · · · · · · · · · · · · · · · · ·
Trade openness Financial depth Fiscal balance Measles immunization Sanitation facilities Source: Base	United States	Peru	Korea, Rep.	China	Finland	Romania	Tunisia	Libya		
	Ecuador	Brazil	Australia	Japan	Slovak Rep.	Cyprus	Qatar	Morocco	·	
Source: Base	d on author	s' calculation	on of efficie	ency estimation	ites.	1	•			1

Table 6: Top 5 and Bottom 5 Countries for Each Indicator by Region⁷

⁷ "Americas" combines countries in the Latin America & the Caribbean and North America World Bank regions. "East and South Asia" combines countries in East Asia & Pacific and South Asia World Bank regions.

Region	Am	ericas	East &	South Asia	Europe &	Central Asia	Middle Ea Afi	st & North ica	Sub-Sah:	aran Africa
Indicator	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5	Top 5	Bottom 5
	Canada	Haiti	Australia	India	Iceland	Ukraine	Oman	Djibouti	Mauritania	Nigeria
Region Indicator Life expectancy Educational quality Access to finance Old-age pension Income inequality	Paraguay	Barbados	New Zealand	Pakistan	Greenland	Russian Fed.	Algeria	Bahrain	Cabo Verde	Sierra Leone
Life	Chile	Trinidad and Tobago	Mongolia	Singapore	San Marino	Turkey	Libya	Yemen, Rep.	Seychelles	Cote d'Ivoire
expectancy	Suriname	Grenada	Bhutan	Bangladesh	Norway	Romania	Tunisia	Iraq	Gabon	Swaziland
	Cuba	St. Vincent and the Grenadines	Solomon Islands	Philippines	Sweden	Netherlands	Saudi Arabia	United Arab Emirates	São Tomé and Príncipe	Lesotho
	Canada	Peru	China	Indonesia	Finland	Kyrgyz Rep.	Israel	Qatar	Mauritius	
	United States	Panama	Vietnam	Malaysia	Estonia	Macedonia	Malta			
Educational	Costa Rica	Argentina	New Zealand	Thailand	Hungary	Azerbaijan	Jordan			-
quanty	Chile	Brazil	Korea, Rep.	Macao SAR, China	Ireland	Albania	United Arab Emirates			
	Uruguay	Colombia	Australia	Japan	Latvia	Georgia	Tunisia			
	Jamaica	El Salvador	Mongolia	Pakistan	Macedonia	Turkmenistan	Iran, Islamic Rep.	Yemen, Rep.	Kenya	Niger
	Bolivia	Mexico	Sri Lanka	Cambodia	Belarus	Tajikistan	Morocco	Iraq	Rwanda	Guinea
finance	Costa Rica	Puerto Rico	Lao PDR	Japan	Serbia	Kyrgyz Rep.	Oman	Egypt, Arab Rep.	Namibia	Central African Rep.
	Belize	Peru	China	Afghanistan	Latvia	Luxembourg	Algeria	Qatar	Ethiopia	Senegal
	Brazil	Nicaragua	Nepal	Indonesia	Bosnia and H.	Armenia	Malta	Djibouti	Liberia	Madagascar
	Belize	El Salvador	China	Lao PDR	Cyprus	Slovenia	Tunisia	Oman	Kenya	Angola
Life expectancy	Trinidad and Tobago	Mexico	Vietnam	Bangladesh	Turkey	Portugal	Algeria	Bahrain	Zimbabwe	Congo, Rep.
Old-age pension	Peru	Paraguay	Mongolia	Indonesia	Czech Rep.	Czech Rep.	Jordan	Saudi Arabia	Mauritius	Togo
	Bolivia	Argentina	Korea, Rep.	Pakistan	Portugal	Turkey	Israel		Burundi	Burkina Faso
	Nicaragua	Colombia	India	Singapore	Slovenia	Cyprus	Morocco	•	Zambia	Cameroon
	Canada	Honduras	Timor- Leste	Tuvalu	Azerbaijan	Macedonia	Algeria	Israel	Mauritania	South Africa
	Uruguay	Colombia	Pakistan	Micronesia, Fed. Sts.	Ukraine	Turkey	Iraq	Djibouti	Liberia	Eswatini
Income inequality	Argentina	Guatemala	Mongolia	Philippines	Belarus	Portugal	Egypt, Arab Rep.	Iran, Islamic Rep.	Sierra Leone	Lesotho
Educational quality Educational quality Cos Grinance Educational Grinance Educational Grinance Educational Grinance Educational Grinance Educational Grinance Educational Grinance Educational Grinance Educational Bol Cos Bell Bra Bell Trin and Tob Per Per Per Bol Nicc Educational Bol Nicc Cos Bell Trin and Tob Per Bol Nicc Car Uru Bol Nicc Car Hai Stat Hai	United States	Brazil	Vanuatu	China	Slovenia	United Kingdom	Lebanon	Morocco	Sudan	Rwanda
	Haiti	Paraguay	Australia	Malaysia	Iceland	Italy	Malta	Tunisia	São Tomé and Príncipe	Namibia

Table 6: Top 5 and Bottom 5 Countries for Each Indicator by Region (cont.)⁸

Source: Based on authors' calculation of efficiency estimates.

⁸ "Americas" combines countries in the Latin America & the Caribbean and North America World Bank regions. "East and South Asia" combines countries in East Asia & Pacific and South Asia World Bank regions.

	Ame	ricas	East & S	outh Asia	Europe & As	& Central sia	Middle Ea Afr	st & North rica	Sub-Saha	ran Africa
Indicator	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Trade openness	0.621	0.122	0.674	0.169	0.712	0.091	0.738	0.076	0.691	0.112
Financial depth	0.544	0.127	0.569	0.150	0.590	0.079	0.475	0.167	0.462	0.144
Fiscal balance	0.833	0.020	0.834	0.031	0.829	0.021	0.851	0.047	0.836	0.029
Measles immunization	0.799	0.068	0.736	0.108	0.781	0.074	0.769	0.088	0.704	0.127
Sanitation facilities	0.332	0.167	0.426	0.226	0.564	0.121	0.492	0.201	0.174	0.106
Life expectancy	0.912	0.038	0.889	0.044	0.935	0.020	0.899	0.040	0.788	0.058
Educational quality	0.773	0.066	0.865	0.081	0.834	0.063	0.745	0.051	0.754	
Access to finance	0.562	0.093	0.613	0.150	0.576	0.141	0.484	0.158	0.543	0.171
Old-age pension	0.524	0.168	0.446	0.225	0.684	0.164	0.470	0.262	0.394	0.207
Income inequality	0.619	0.056	0.716	0.047	0.759	0.041	0.739	0.068	0.666	0.083

Table 7: Average and Dispersion in OTE for Each Indicator by Region

Source: Authors' calculation of efficiency estimates.

Figure 1: Frontier and Efficiency Gap for Educational Quality

Source: Authors' own illustration.

Figure 2: Maps of Efficiency (OTE) by Indicator

a. Trade openness

b. Financial depth

c. Fiscal balance

Figure 2: Efficiency Results for Each Indicator (cont.)

d. Measles immunization

e. Sanitization facilities

f. Life expectancy

Figure 2: Efficiency Results for Each Indicator (cont.)

g. Educational quality

h. Access to finance

i. Old-age pension

Figure 2: Efficiency Results for Each Indicator (cont.)

j. Income inequality

Source: Authors' illustration based on their calculation of efficiency estimates.

Ctry	η_{i0}	τ_{i0}	$ au_{iT}$	$\Delta\% au_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\% au_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\% \tau_i$	Ctry	η_{i0}	τ_{i0}	$ au_{iT}$	$\Delta\% \tau_i$
AFG	52.2	0.0419	0.0418	-0.11	DOM	54.2	0.0418	0.0419	0.1	KSV	59.0	0.0418	0.0419	0.1	PRY	30.3	0.0418	0.0419	0.11
AGO	17.2	0.0418	0.0419	0.26	DZA	31.9	0.0418	0.0419	0.1	кwт	44.3	0.0419	0.0418	0.0	QAT	47.8	0.0419	0.0418	-0.06
ALB	42.6	0.0419	0.0419	0.01	ECU	47.7	0.0419	0.0419	0.0	LAO	33.0	0.0419	0.0418	-0.2	ROM	35.9	0.0418	0.0418	-0.01
ARE	22.9	0.0419	0.0418	-0.27	EGY	42.5	0.0418	0.0419	0.3	LBN	40.9	0.0418	0.0419	0.1	RUS	41.7	0.0418	0.0419	0.14
ARG	78.0	0.0418	0.0419	0.22	ERI	79.9	0.0417	0.0419	0.3	LBR	12.0	0.0417	0.0419	0.4	RWA	78.1	0.0419	0.0418	-0.12
ARM	59.5	0.0418	0.0418	0.03	ESP	55.2	0.0419	0.0418	-0.1	LBY	24.0	0.0418	0.0419	0.1	SAU	29.1	0.0419	0.0419	0.02
ASM	31.0	0.0418	0.0418	-0.01	EST	20.4	0.0419	0.0418	0.0	LCA	58.1	0.0418	0.0419	0.2	SDN	70.1	0.0418	0.0420	0.54
ATG	57.0	0.0418	0.0419	0.11	ETH	52.6	0.0418	0.0419	0.1	LKA	48.6	0.0418	0.0419	0.3	SEN	32.4	0.0419	0.0418	-0.03
AUS	76.7	0.0419	0.0419	-0.02	FIN	46.6	0.0418	0.0419	0.0	LSO	21.9	0.0418	0.0419	0.2	SGP	9.7	0.0418	0.0419	0.11
AUT	43.5	0.0419	0.0418	-0.03	FJI	25.6	0.0418	0.0419	0.0	LTU	21.3	0.0419	0.0418	-0.1	SLB	26.4	0.0419	0.0418	-0.15
AZE	37.6	0.0418	0.0419	0.34	FRA	55.3	0.0419	0.0418	0.0	LUX	15.9	0.0419	0.0418	-0.1	SLE	44.9	0.0419	0.0418	-0.30
BDI	70.9	0.0419	0.0419	0.01	FSM	45.3	0.0419	0.0419	0.0	LVA	30.0	0.0419	0.0418	-0.1	SLV	45.8	0.0418	0.0419	0.03
BEL	19.5	0.0419	0.0418	-0.05	GAB	39.7	0.0418	0.0419	0.1	MAC	50.5	0.0418	0.0419	0.1	SRB	43.0	0.0419	0.0418	-0.12
BEN	45.8	0.0419	0.0418	-0.28	GBR	55.5	0.0419	0.0419	0.0	MAR	28.0	0.0419	0.0418	-0.1	SUR	33.6	0.0419	0.0419	-0.12
BFA	63.4	0.0419	0.0418	-0.28	GEO	29.9	0.0419	0.0418	-0.1	MDA	23.3	0.0418	0.0419	0.1	SVK	20.2	0.0419	0.0418	-0.07
BGD	51.0	0.0419	0.0418	-0.12	GHA	26.8	0.0418	0.0418	0.1	MDG	25.5	0.0418	0.0418	0.0	SVN	26.4	0.0419	0.0418	-0.07
BGR	22.0	0.0419	0.0418	-0.12	GMB	43.1	0.0418	0.0418	0.1	MDV	24.5	0.0418	0.0418	0.1	SWE	38.3	0.0419	0.0419	0.02
BHR	29.8	0.0419	0.0418	-0.09	GNB	63.9	0.0419	0.0418	0.0	MEX	38.0	0.0419	0.0418	-0.1	swz	33.3	0.0418	0.0419	0.15
BHS	57.9	0.0418	0.0419	0.05	GNQ	25.2	0.0418	0.0419	0.3	MHL	43.6	0.0419	0.0418	0.0	SYC	25.6	0.0419	0.0419	0.01
BIH	33.7	0.0418	0.0419	0.17	GRC	64.3	0.0419	0.0418	-0.1	MKD	39.0	0.0419	0.0418	-0.1	TCD	29.8	0.0418	0.0419	0.09
BLR	17.7	0.0419	0.0419	0.09	GRD	75.3	0.0419	0.0418	-0.2	MLI	46.9	0.0419	0.0418	0.0	TGO	22.5	0.0418	0.0418	-0.04
BLZ	32.0	0.0419	0.0418	-0.02	GRL	47.2	0.0418	0.0419	0.1	MLT	14.9	0.0419	0.0419	-0.1	THA	13.9	0.0418	0.0419	0.05
BMU	101.2	0.0418	0.0419	0.08	GTM	45.3	0.0418	0.0419	0.1	MMR	336.3	0.0422	0.0410	-2.8	ТЈК	36.0	0.0418	0.0419	0.24
BOL	37.0	0.0419	0.0418	-0.11	GUM	76.1	0.0419	0.0419	0.0	MNE	32.2	0.0418	0.0419	0.2	ткм	24.8	0.0418	0.0419	0.02
BRA	93.1	0.0418	0.0419	0.07	GUY	18.7	0.0417	0.0419	0.3	MNG	24.7	0.0418	0.0419	0.1	тмр	24.2	0.0418	0.0419	0.30
BRB	65.1	0.0418	0.0419	0.05	HKG	9.2	0.0419	0.0418	-0.1	MNP	52.7	0.0419	0.0418	0.0	TON	<u>69.0</u>	0.0418	0.0419	0.03
BRN	55.4	0.0419	0.0419	0.00	HND	18.4	0.0418	0.0419	0.1	MOZ	19.8	0.0419	0.0418	-0.2	πο	35.6	0.0418	0.0419	0.06
BTN	33.4	0.0419	0.0419	0.09	HRV	41.9	0.0418	0.0418	0.0	MRT	19.2	0.0418	0.0419	0.1	TUN	23.8	0.0419	0.0419	-0.03
BWA	41.7	0.0419	0.0418	-0.12	HTI	41.1	0.0419	0.0418	-0.1	MUS	34.8	0.0418	0.0419	0.1	TUR	54.7	0.0419	0.0418	-0.05
CAF	85.3	0.0419	0.0418	-0.19	HUN	19.8	0.0419	0.0418	-0.1	MWI	48.2	0.0419	0.0418	-0.1	TZA	43.6	0.0419	0.0418	-0.11
CAN	44.0	0.0418	0.0419	0.08	IDN	39.2	0.0418	0.0419	0.1	MYS	14.1	0.0418	0.0419	0.2	UGA	58.0	0.0419	0.0419	-0.08
CHE	45.1	0.0419	0.0418	-0.07	IND	29.0	0.0419	0.0419	0.0	NAM	25.9	0.0419	0.0419	-0.1	UKR	19.4	0.0418	0.0419	0.05
CHL	39.5	0.0418	0.0419	0.09	IRL	19.7	0.0419	0.0418	-0.2	NER	44.0	0.0419	0.0418	-0.1	URY	73.1	0.0418	0.0419	0.13
CHN	27.5	0.0418	0.0419	0.24	IRN	51.5	0.0418	0.0419	0.1	NGA	41.4	0.0418	0.0420	0.3	USA	89.9	0.0419	0.0418	-0.07
CIV	24.2	0.0418	0.0419	0.24	IRQ	28.4	0.0418	0.0419	0.3	NIC	24.8	0.0419	0.0418	-0.2	UZB	41.7	0.0418	0.0419	0.19
CMR	45.3	0.0419	0.0419	-0.03	ISL	50.0	0.0419	0.0418	-0.1	NLD	21.8	0.0419	0.0418	-0.1	VCT	68.1	0.0418	0.0419	0.08
COG	16.5	0.0418	0.0418	-0.01	ISR	54.8	0.0418	0.0419	0.2	NOR	58.3	0.0418	0.0419	0.0	VEN	58.2	0.0418	0.0419	0.14
COL	/3.6	0.0419	0.0419	-0.01		60.4	0.0419	0.0418	0.0	NPL	63./	0.0419	0.0418	-0.1	VIR	38.3	0.0418	0.0418	-0.03
COM	58.1	0.0419	0.0418	-0.22	JAM	38.7	0.0418	0.0419	0.1	NZL	67.4	0.0418	0.0419	0.1	VNIVI	10.7	0.0419	0.0418	-0.11
CPV	40.7	0.0418	0.0419	0.06	JOR	16.8	0.0418	0.0419	0.1		32.7	0.0419	0.0418	-0.1	VUI	44.7	0.0418	0.0419	0.02
CRI	51.0	0.0418	0.0419	0.19	JPN	97.4	0.0419	0.0418	-0.2	PAK	64.2	0.0418	0.0419	0.1	WSIVI	62.8	0.0419	0.0419	0.02
CUB	//.9	0.0419	0.0419	0.04	KAZ	36.6	0.0418	0.0419	0.3	PAN	21.7	0.0418	0.0419	0.1	YEIVI	33.0	0.0418	0.0419	0.27
CYP	41.9	0.0418	0.0418	-0.02	KEN	38.7	0.0418	0.0419	0.1	PER	49.5	0.0419	0.0419	0.0		40.1	0.0419	0.0418	-0.08
DEU	25.4	0.0419	0.0418	-0.12		14.5	0.0419	0.0419	-0.1		20.8	0.0418	0.0419	0.3	ZAR	21./	0.0420	0.0418	-0.34
	34.5	0.0419	0.0418	-0.08		14.5	0.0418	0.0418	0.1		20.1	0.0419	0.0418	-0.1		41.1	0.0419	0.0418	-0.13
	65.0	0.0419	0.0418	-0.21		77.0	0.0418	0.0418	-0.1	DDI	24.0	0.0419	0.0418	-0.1	ZVVE	52.4	0.0419	0.0419	0.07
DNK	39.3	0.0419	0.0418	-0.05	KOR	28.6	0.0419	0.0418	-0.1	PRT	50.0	0.0419	0.0418	-01					

Appendix A.1. Persistent and Time-Varying Inefficiency in Trade Openness

Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\%\tau_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta \% \tau_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$
AFG	140.2	11.7	15.5	33.0	DZA	100.0	10.7	9.9	-7.2	кwт	69.8	11.1	14.1	27.9	ROM	67.6	22.1	18.8	-15.1
AGO	83.1	43.0	7.0	-83.6	ECU	77.7	10.4	11.9	14.5	LAO	73.6	15.5	4.3	-72.0	RUS	47.8	18.7	9.6	-48.7
ALB	52.3	29.8	12.5	-58.0	EGY	48.2	4.2	29.9	607.9	LBN	54.2	10.4	10.0	-4.3	RWA	65.9	10.8	8.4	-22.3
ARE	104.0	13.8	14.1	1.9	ERI	47.9	4.7	29.8	533.9	LBR	57.2	17.8	7.6	-57.1	SAU	67.4	9.2	11.5	24.5
ARG	125.5	11.7	13.2	12.8	ESP	27.3	9.5	22.5	137.8	LBY	113.5	17.5	5.6	-68.1	SDN	91.7	8.1	33.0	304.6
ARM	54.4	43.4	4.7	-89.1	EST	23.7	12.3	22.6	83.7	LCA	32.5	11.9	16.4	38.6	SEN	48.6	12.0	9.1	-24.3
ATG	46.3	9.5	19.9	108.9	ETH	32.8	7.5	19.6	160.4	LKA	58.8	6.9	12.9	86.9	SGP	94.6	9.5	10.2	7.5
AUS	25.2	8.9	13.8	54.9	FIN	40.0	10.3	12.8	23.5	LSO	79.6	20.4	6.7	-67.0	SLB	29.8	16.7	7.9	-52.9
AUT	40.3	7.5	18.0	138.2	FJI	18.7	9.8	15.3	56.8	LTU	51.3	7.0	18.9	169.5	SLE	126.3	20.4	20.0	-1.7
AZE	75.1	22.1	6.2	-71.8	FRA	50.5	9.9	14.5	46.3	LUX	61.2	10.8	16.2	49.3	SLV	50.8	7.4	14.1	89.4
BDI	52.2	10.5	14.3	36.8	FSM	60.6	8.7	13.5	56.0	LVA	34.8	5.6	24.0	330.3	SRB	42.6	15.4	13.7	-10.9
BEL	80.7	6.9	16.6	141.2	GAB	125.4	8.4	8.5	1.3	MAC	116.5	12.7	9.1	-27.9	STP	30.2	9.1	20.0	121.3
BEN	61.5	15.9	11.5	-27.6	GBR	31.5	9.6	23.0	138.9	MAR	28.9	13.6	12.6	-7.2	SUR	44.1	11.1	9.8	-11.6
BFA	49.1	9.9	7.2	-27.6	GEO	45.3	28.5	7.2	-74.7	MDA	34.7	17.8	14.3	-20.1	SVK	56.8	12.9	11.6	-10.1
BGD	44.7	11./	11.4	-2.4	GHA	83.2	7.4	9.6	29.7	MDG	(0.1	9.7	11.5	18.9	SVN	45.7	12.9	26.4	104.4
BGR	34.0	17.6	10.3	-7.3	GIN	143.2	5.9	4.9	-16.2	MDV	69.1	15.2	18.9	161.8	SWE	31.5	10.4	13.2	26.6
	46.1	14.4	15.9	-5.5		12.5	9.7	19.7	103.9		40.1	22.1	9.4	-56.5	SVVZ	107.5	10.4	13.9	100.4
BIH	33.8	6.2	15.8	155.2	GNO	162.2	13.2	8.8	-32.2	MIL	49.6	11.2	8.6	-23.4	тер	130.1	18.5	5.4	-70.8
BIR	61.7	18.9	22.5	193.2	GRC	37.5	13.2	11.2	-16.2	MIT	44.3	93	19.6	110.8	TGO	47.9	24.7	6.6	-73.4
BLZ	28.9	8.9	18.2	105.0	GRD	38.1	10.8	20.2	87.3	MMR	128.4	10.1	3.6	-64.2	тна	21.8	11.8	9.8	-16.8
BOL	25.5	6.4	9,9	55.3	GTM	66.4	9.0	10.8	20.6	MNE	24.7	6.2	21.4	245.2	тік	51.2	23.9	9.5	-60.2
BRA	49.8	18.9	8.4	-55.5	GUY	21.9	4.3	9.9	132.0	MNG	20.9	16.1	7.7	-52.0	тмр	63.4	12.5	11.6	-7.3
BRB	49.9	10.0	13.1	30.9	HKG	55.9	11.2	8.6	-23.3	MOZ	40.8	21.3	6.3	-70.4	TON	33.5	5.0	25.6	411.2
BRN	104.5	6.3	16.7	165.3	HND	31.4	12.4	12.1	-2.4	MRT	35.9	7.2	14.1	96.6	πο	66.9	5.9	19.6	229.7
BTN	22.8	23.0	9.4	-59.2	HRV	41.4	11.0	14.1	28.2	MUS	37.9	9.0	11.7	29.9	TUN	28.3	9.1	11.7	27.6
BWA	65.6	12.8	11.4	-11.1	нті	88.0	11.0	8.3	-23.9	MWI	89.9	36.4	10.0	-72.7	TUR	68.4	25.2	6.2	-75.2
CAF	64.0	14.1	6.3	-55.4	HUN	47.8	10.5	23.8	126.2	MYS	36.3	7.7	12.9	67.0	TZA	82.8	13.9	12.1	-13.4
CAN	20.3	7.0	21.2	202.7	IDN	69.1	10.2	9.3	-8.7	NAM	26.3	7.0	15.3	119.7	UGA	74.8	14.9	11.5	-22.4
CHE	46.2	8.6	13.4	56.0	IND	36.7	10.0	14.6	46.4	NER	64.8	34.2	8.1	-76.4	UKR	27.6	31.4	13.0	-58.5
CHL	25.8	10.8	12.2	13.2	IRL	47.7	6.9	37.6	445.5	NGA	91.7	12.8	26.6	108.1	URY	110.1	8.9	11.4	28.6
CHN	19.5	7.3	13.1	79.1	IRN	44.5	11.6	13.9	19.4	NIC	44.7	11.8	11.2	-4.9	USA	24.8	7.5	14.7	95.9
CIV	86.5	19.1	8.9	-53.6	IRQ	209.2	35.3	5.9	-83.3	NLD	48.6	7.3	14.7	102.3	VCT	49.5	9.1	15.5	70.0
CMR	101.7	10.8	9.6	-11.3	ISL	14.3	4.1	40.4	877.2	NOR	34.8	8.9	13.1	46.8	VEN	105.7	22.2	6.8	-69.3
COG	156.1	34.5	3.1	-90.9	ISR	62.6	6.3	16.9	166.9	NPL	23.3	20.6	9.1	-55.7	VNM	19.8	14.4	13.2	-8.5
COL	50.3	15.8	9.2	-41.5	ITA	56.2	11.2	14.2	26.6	NZL	23.0	10.5	13.6	29.7	VUT	27.5	13.4	9.3	-30.7
СОМ	65.9	19.4	6.2	-67.9	JAM	82.3	13.9	12.7	-8.3	OMN	59.4	11.6	11.1	-4.4	WSM	32.1	19.5	10.1	-48.4
CPV	33.4	12.6	13.0	3.0	JOR	24.3	6.1	20.6	237.8	PAK	69.5	4.9	29.9	508.9	YEM	138.5	6.9	21.7	213.7
CRI	73.6	12.2	11.1	-9.0	JPN	35.9	7.2	14.9	105.8	PAN	37.9	7.3	14.8	102.3	ZAF	18.2	8.5	14.6	72.0
CYP	22.1	13.9	11.3	-19.3		32.9	9.1	21.1	204.2	PER	67.4	11.8	10.6	-10.1	ZAR	148.2	55.8	6.5	-88.4
DEU	55.7	10.5	10.0	-28.2	KEN	40.0	8.5	9.6	13.0	PHL	64.0	8.8	10.0	14.2	ZIVIB	77.0	22.3	7.3	-07.4
	33./	15.0	10.9	-27.7	KHM	41.0	42.0	0.2	-02.5	POI	62 5	18 /	9.3	-35.9					
DMA	Δ2 1	10.0	14.0	67.2	KNA	52 /	92.9	16.2	-90.0	PRT	26.6	0.9	18.6	-59.9					
DNK	28.3	9.8	16.6	68.8	KOR	31.9	9.7	15.8	63.4	PRY	42.9	29.1	5.2	-82.0					
DOM	91.5	8.0	11.4	42.7	KSV	46.5	10.1	13.6	34.6	QAT	109.6	9.7	11.2	15.1					

Appendix A.2. Persistent and Time-Varying Inefficiency in Financial Depth

Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% au_i$	Ctry	η_{i0}	τ_{i}	$_{0}\tau_{iT}$	$\Delta\% \tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$
AFG	15.2	1.9	2.1	8.8	ECU	15.8	1.9	2.6	38.0	LBN	14.9	2.1	1.8	-17.3	SAU	8.5	1.2	4.4	259.1
AGO	12.9	1.3	3.4	154.5	EGY	19.1	2.1	2.2	0.1	LBR	17.5	1.8	1.8	-2.2	SDN	16.4	2.2	1.8	-17.9
ALB	16.8	2.0	2.1	2.5	ERI	28.2	3.9	2.1	-45.9	LBY	21.9	1.8	15.2	744.8	SEN	18.3	1.7	1.9	11.0
ARE	8.1	1.3	2.6	101.4	ESP	19.4	1.5	1.9	24.9	LCA	17.4	2.6	1.7	-36.3	SGP	12.0	1.9	2.2	15.8
ARG	16.4	1.7	2.4	37.3	EST	15.5	2.0	1.8	-8.1	LKA	16.7	2.2	1.9	-17.0	SLB	12.4	2.8	1.9	-31.5
ARM	17.6	2.1	1.7	-17.3	ETH	16.2	2.4	1.9	-20.4	LSO	12.9	1.7	2.0	19.6	SLE	14.5	2.0	2.3	13.4
ATG	19.2	4.2	1.6	-62.6	FIN	17.2	1.9	2.4	27.2	LTU	18.6	1.9	1.5	-16.8	SLV	16.5	2.1	1.9	-13.0
AUS	19.1	1.8	2.0	9.1	FJI	14.3	2.4	2.1	-11.7	LUX	16.2	2.4	1.8	-24.1	SMR	17.6	2.4	1.6	-34.9
AUT	17.1	2.2	1.9	-10.7	FRA	18.1	2.0	1.9	-7.0	LVA	17.9	2.1	1.8	-13.3	SRB	17.5	1.7	2.1	28.2
AZE	9.7	2.7	2.3	-15.9	FSM	14.8	3.2	1.0	-69.5	MAR	16.5	2.5	2.0	-17.9	STP	19.5	2.7	1.8	-33.6
BDI	16.1	2.1	2.0	-3.2	GAB	11.0	1.6	2.2	41.3	MDA	16.0	1.7	1.9	12.3	SUR	17.0	2.0	2.9	47.8
BEL	15.7	2.1	2.0	-3.1	GBR	20.0	1.9	1.9	-2.1	MDG	16.2	2.1	1.9	-5.8	svк	18.7	2.1	1.7	-17.2
BEN	15.6	2.4	2.1	-14.4	GEO	15.9	1.7	2.0	15.6	MDV	18.6	2.2	2.2	3.0	SVN	19.0	1.8	2.0	6.0
BFA	16.3	2.8	1.9	-34.3	GHA	19.6	1.7	2.1	25.6	MEX	16.1	1.9	2.1	9.4	SWE	16.4	1.9	2.2	16.3
BGD	15.1	2.2	1.8	-16.6	GIN	16.8	1.8	2.1	15.0	MHL	16.2	<mark>8.6</mark>	1.6	-80.8	swz	14.4	2.3	1.9	-16.6
BGR	15.7	1.8	2.4	37.7	GMB	15.5	1.9	2.5	33.0	MKD	17.1	1.9	2.2	15.7	SYC	10.7	2.0	1.8	-9.7
BHR	16.0	1.6	2.4	44.6	GNB	15.6	2.3	2.0	-13.2	MLI	15.2	2.6	2.3	-14.5	TCD	16.2	2.1	2.3	12.2
BHS	18.4	2.1	2.1	0.9	GNQ	12.1	0.9	3.7	299.2	MLT	15.3	2.1	1.8	-12.0	TGO	17.3	2.1	2.1	1.9
BIH	17.1	1.8	2.0	12.9	GRC	19.1	2.0	1.6	-21.3	MMR	16.4	2.2	1.5	-30.6	THA	14.8	1.9	2.0	2.1
BLR	14.2	2.1	1.8	-13.4	GRD	17.9	1.7	1.8	6.2	MNE	16.6	1.2	1.7	48.9	тјк	16.8	2.3	1.6	-29.3
BLZ	14.5	2.1	2.3	12.6	GTM	16.2	2.1	1.8	-13.9	MNG	18.9	1.6	3.1	93.5	TON	13.4	1.9	1.9	-3.8
BOL	13.9	2.4	2.6	6.4	GUY	18.6	2.7	2.0	-25.8	MOZ	18.1	2.0	3.0	55.4	πο	13.0	1.6	2.5	58.3
BRA	14.0	2.0	2.2	14.5	HKG	14.9	2.3	1.6	-30.9	MRT	16.4	2.5	2.2	-9.3	TUN	16.6	2.1	2.0	-5.7
BRB	17.3	2.0	2.0	-1.0	HND	18.9	1.9	1.9	0.7	MUS	15.2	2.3	2.0	-14.7	TUR	14.3	1.8	1.9	8.1
BRN	5.4	1.7	3.4	96.9	HRV	18.7	2.2	1.9	-10.6	MWI	14.5	1.9	1.9	0.6	τυν	26.2	3.1	0.4	-86.9
BTN	14.6	3.4	2.1	-38.8	нті	17.6	2.1	2.3	11.5	MYS	18.6	2.1	1.7	-18.0	TZA	17.3	2.2	1.8	-19.2
BWA	26.6	1.7	1.7	1.5	HUN	17.0	2.7	1.6	-40.4	NAM	16.6	2.0	2.3	16.1	UGA	15.9	1.9	1.9	4.6
CAF	15.3	3.0	1.5	-48.2	IDN	14.6	1.9	2.0	8.1	NER	14.2	2.6	3.5	32.8	UKR	17.4	2.1	1.8	-15.2
CAN	17.9	1.8	1.8	1.8	IND	16.9	2.1	1.8	-12.2	NGA	13.8	1.5	2.2	45.0	URY	16.0	1.9	2.2	17.0
CHE	16.6	2.3	2.0	-12.7	IRL	23.3	1.3	1.4	4.1	NIC	15.4	2.1	2.0	-6.1	USA	20.5	1.8	1.7	-7.8
CHL	14.8	1.8	2.3	31.5	IRN	14.5	1.8	2.2	19.7	NLD	17.1	1.9	1.9	2.3	UZB	11.5	2.5	2.1	-18.5
CHN	14.9	2.3	1.9	-16.4	IRQ	15.6	1.7	2.8	63.0	NOR	8.3	1.8	2.4	30.1	VCI	16.9	2.3	1.9	-17.1
CIV	15.7	2.1	2.0	-5.0	ISL	17.7	1.5	1.4	-1.0		14.3	2.1	1./	-19.4	VEIN	21.8	1.0	3.1	198.0
CIVIR	12.9	1.9	3.0	02.2	ISR	15.5	2.0	2.0	3.0		17.4	1.0	1.8	117.1		10.0	1.9	2.2	14.3
COG	15.2	1.3	5.7	353.5		10.4	2.3	1.8	-21.0	DAK	11.0	1.5	3.3	117.0	VOI	16.0	1.9	1.7	-9.0
COL	10.3	2.0	1.9	-3.9		10.4	1.7	1.7	-0.8		10.2	1.9	1./	-11.5		10.7	1.0	1.0	-20.5
	10.0	2.4	2.2	-7.4		21.7	2.2	1.5	-51.0		13.0	2.2	2.5	5.4	245	12.7	1.0	1.0	15.2
CPV	17.2	1.0	2.0	-0.5		12.7	2.1	1.9	-0.7		12.6	2.5	1.0	-9.2	2AR	15.9	2.1	1.0	-13.2
CVP	16.6	2.9	2.5	21.7		17.0	1.9	2.1	21.7		15.0	2.0	2.0	-11.7	21410	15.5	2.5	1.0	21.4
CTF	17.0	2.1	1.0	-23.5	KG7	17.0	2.9	1.0	-14.2	POL	17.6	2.1	1.9	-14.3	ZVVE	10.0	2.1	1.9	-51.4
DELL	15.3	2.5	1.0	-22.5	KHM	16.4	2.2	1.9	-14.2	PPT	10.2	2.1	1.0	-14.5					
	17.3	1.7	3.7	112.5	KIR	23.4	2.0	0.5	-85.2	PRV	14.9	2.4	2.0	-20.4					
DMA	15.7	1.6	24	47 9	KNA	11 1	2.5	1 2	-51 2	OAT	6.6	2.0	1.0	-45.7					
DNK	15.7	1.6	1.8	12.5	KOR	14 9	2.0	2.0	0.8	ROM	17 9	1.8	17	-85					
DOM	16.3	2.0	1.8	-5.7	кут	0.0	1.5	1.9	26.1	RUS	14.8	1.4	2.2	54.2					
DZA	14.6	1.1	3.6	224.0	LAO	17.8	2.4	2.1	-12.4	RWA	14.8	1.9	2.2	16.4					

Appendix A.3. Persistent and Time-Varying Inefficiency in Fiscal Balance

Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\% \tau_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\%\tau_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta \% \tau_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\% \tau_i$
ADO	22.5	5.1	6.0	17.7	DOM	28.5	6.8	4.2	-38.4	LAO	51.8	28.0	0.9	-97.0	RUS	8.2	4.1	6.2	52.3
AFG	47.7	9.2	3.7	-60.0	DZA	13.4	9.2	4.7	-49.1	LBN	42.9	15.3	4.4	-71.5	RWA	10.9	6.5	4.6	-29.4
AGO	29.1	38.9	2.8	-92.7	ECU	13.8	5.1	12.4	143.6	LBR	32.3	8.7	18.1	107.4	SAU	13.5	4.4	5.5	24.1
ALB	10.0	4.3	5.9	36.2	EGY	12.0	3.4	7.1	109.1	LBY	8.9	4.5	7.1	57.3	SDN	21.4	13.1	3.9	-69.8
ARE	27.1	4.5	5.6	25.1	ERI	3.1	5.1	5.3	3.3	LCA	16.4	5.2	4.7	-10.4	SEN	24.5	8.2	6.4	-22.0
ARG	12.2	3.5	6.2	79.3	ESP	20.6	4.2	6.3	50.5	LKA	11.5	4.0	5.7	41.4	SGP	33.6	4.0	6.3	57.0
ARM	11.9	4.5	5.6	24.8	EST	13.8	3.7	7.1	91.5	LSO	18.2	5.9	3.7	-38.3	SLB	10.7	5.5	3.9	-28.8
ATG	14.7	4.1	6.1	47.3	ETH	55.8	26.6	1.6	-94.0	LTU	14.7	3.6	7.3	102.2	SLE	27.5	7.1	4.7	-33.6
AUS	16.3	4.2	6.4	52.5	FIN	16.5	4.3	6.1	41.4	LUX	25.8	4.9	5.1	4.8	SLV	17.1	3.0	6.0	96.7
AUT	44.8	5./	7.0	22.2	FJI	12.1	5.7	5.5	-2.9		14.2	3.2	6.0	87.2	SMR	47.8	1./	26.3	1491.9
AZE	25.1	17.1 6 2	2.2	-87.4	FRA	30.5	5.3	5.5	3./		9.5	4.3	5.2	21.4	SKB	18.5	3.1	9.7	209.9
BEI	12.9	7.2	4.5	-28.5	CAR	18.5	12.0	4.7	83.Z	MDG	28.0	3.3	7.8	276.4	SIP	15.5	4.8	5.0	4.8
BEN	27.0 A2 A	7.2 9.9	0.5	-50.2	GRD	22.2	77	0.4	-31.3	MDV	19.9	2.5 6.1	0.0	-20.0	SVK	15.0	2.0	6.6	52.1
BEA	12.4	6.4	5.5	2.0	GEO	12.5	5.1	6.6	30.5	MEX	16.0	4.2	5.3	20.0	SVN	10.4	4.5	6.6	41.8
BGD	20.8	4.6	5.9	28.5	GHA	16.1	7.5	4.8	-36.2	мні	23.8	4.6	10.5	127.6	SWF	18.3	4.5	5.8	29.1
BGR	13.8	4.1	7.2	76.0	GIN	57.1	9.5	11.0	16.0	MKD	13.4	4.3	7.4	70.9	swz	18.0	3.3	8.0	145.2
BHR	22.7	4.2	5.9	40.0	GMB	10.4	4.4	4.5	2.4	MLI	29.0	4.4	3.3	-26.8	SYC	13.9	4.1	5.4	33.5
BHS	20.8	7.6	5.6	-25.6	GNB	34.0	2.6	7.4	178.8	MLT	34.4	4.5	2.4	-46.1	тср	82.9	33.3	1.4	-95.8
BIH	17.3	3.4	7.0	107.8	GNQ	77.8	2.0	14.0	616.7	MMR	17.5	4.2	5.6	35.2	TGO	35.7	5.1	2.2	-56.8
BLR	8.0	3.9	6.0	51.8	GRC	17.7	5.2	6.7	29.0	MNE	18.7	4.5	6.0	34.9	тна	13.3	5.0	5.3	6.3
BLZ	6.1	4.8	6.9	43.2	GRD	15.6	3.4	7.2	112.1	MNG	0.0	4.2	5.6	32.3	тјк	11.5	6.8	3.3	-51.7
BOL	10.3	5.4	4.4	-18.0	GTM	21.1	3.0	24.1	702.6	MOZ	18.8	4.8	4.0	-16.4	ткм	4.3	4.2	5.8	39.8
BRA	11.9	4.1	6.4	55.8	GUY	1.9	5.7	4.4	-22.9	MRT	32.8	6.9	1.6	-76.8	тмр	37.5	7.6	3.2	-57.2
BRB	28.2	3.3	3.8	13.1	HND	11.1	3.8	9.8	155.4	MUS	15.5	4.4	6.2	41.3	TON	41.1	1.9	9.1	389.3
BRN	18.9	4.0	5.6	41.0	HRV	17.2	4.0	6.7	66.2	MWI	16.0	7.4	7.6	2.9	πο	22.4	3.6	4.3	21.3
BTN	5.8	4.6	5.0	7.2	нті	54.3	7.1	15.4	118.3	MYS	17.5	3.9	6.5	64.3	TUN	11.0	4.4	5.4	22.3
BWA	8.0	5.1	5.3	2.3	HUN	15.9	4.3	6.0	39.6	NAM	29.4	5.0	2.7	-46.1	TUR	16.8	6.6	7.1	7.9
CAF	62.1	1.4	8.2	480.5	IDN	33.1	5.3	7.1	33.8	NER	39.4	24.6	2.8	-88.7	τυν	19.8	27.1	3.3	-88.0
CAN	16.1	4.5	5.8	27.4	IND	34.4	10.7	3.5	-66.9	NGA	77.9	15.2	5.3	-65.4	TZA	8.0	5.0	3.8	-23.9
CHE	32.9	6.3	5.0	-19.9	IRL	28.5	6.7	4.6	-30.6	NIC	5.0	5.1	5.6	9.7	UGA	31.4	9.6	3.4	-64.1
CHL	17.8	5.0	5.1	1.2	IRN	11.3	5.8	5.5	-5.7	NLD	27.0	4.3	5.9	36.3	UKR	28.0	1.6	7.5	385.1
CHN	13.0	9.3	5.1	-45.6	IRQ	45.1	4.1	18./	358.3	NOR	23.2	5.4	5.4	-1.0	URY	13.8	4.4	5.3	19.9
CIV	42.6	1.3	10.3	688.7		14.6	5.2	7.3	41.6		21.5	11.2	4.3	-61.5	USA	25.7	4.2	6.3	49.8
	29.3	10.0	4.5	-57.8	ISR	23.0	5.4	0.1	15.5		25.3	7.4	5.9	-47.0	VCT	12.0	3.8	5.5	41.9
	30.7 17 1	2.2	6.4	-69.0		25.2	5.4	7.9	-36.6	DAK	11.1	4.2	5.7 8.2	285 Q	VEN	27.4	4.0	5.5 / 1	-60.7
COM	33.4	3.2 10.1	3.6	-64.3		10.9	49	5.4	11 5	ΡΔΝ	14 0	2.1	9.2	182.0	VIM	12.7	3.9	4.1	27.4
CPV	12.0	4.7	6.7	42.1	JPN	26.9	3.8	4.9	29.6	PER	16.2	12.9	6.5	-49.8	VUT	64.9	4.6	6.1	32.6
CRI	24.0	4.0	3.4	-16.0	KAZ	6.2	3.9	6.1	54.9	PHL	23.0	3.1	5.8	90.4	WSM	47.6	11.5	1.0	-91.6
CUB	11.2	4.3	5.6	29.9	KEN	23.4	14.1	7.7	-45.1	PLW	26.8	1.6	5.9	272.0	YEM	34.5	3.2	4.9	52.5
СҮР	30.0	4.6	6.4	39.2	KGZ	2.9	3.8	7.0	82.9	PNG	50.4	3.8	3.7	-1.1	ZAF	45.2	9.5314	5.9237	-37.85
CZE	18.8	4.6	5.4	17.2	кнм	14.0	9.1	3.7	-59.7	POL	15.4	4.2	6.0	42.4	ZAR	32.9	12.3475	2.8719	-76.74
DEU	24.1	4.7	5.7	20.9	KIR	21.8	3.9	3.1	-20.2	PRT	20.1	5.6	5.1	-10.4	ZMB	16.0	4.8462	6.8553	41.46
ILD	27.1	13.7	9.9	-28.1	KNA	15.4	3.9	8.6	121.7	PRY	13.7	4.6	6.4	39.1	ZWE	25.4	15.1212	2.1271	-85.93
DMA	11.4	4.0	7.5	86.8	KOR	22.4	3.6	5.2	43.3	QAT	23.5	4.9	5.3	8.1					
DNK	31.9	2.7	5.3	96.5	кwт	20.8	4.1	8.8	113.8	ROM	16.6	3.6	9.2	157.3					

Appendix A.4. Persistent and Time-Varying Inefficiency in Measles Immunization

Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\%\tau$	i Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$
ADO	29.9	65.3	5.3	-91.9	EST	28.8	18.9	26.2	38.4	MYS	18.6	19.5	25.9	32.9
ALB	17.0	23.1	23.5	1.5	FIN	12.6	18.7	26.4	41.3	NER	209.6	38.4	8.5	-77.9
ARE	18.2	13.3	27.8	108.9	FRA	43.2	20.6	24.4	18.4	NLD	32.8	18.7	25.8	38.4
ARG	123.9	17.3	28.0	61.6	GBR	39.2	18.5	26.5	42.8	NOR	29.3	19.3	25.4	32.0
AUS	37.4	23.1	22.1	-4.5	GRC	36.9	19.6	25.7	31.2	NZL	20.4	18.9	26.5	40.6
AUT	17.3	18.9	25.9	37.1	GRL	4.7	19.0	25.9	36.4	PER	124.6	39.2	8.2	-79.1
BEL	39.2	31.3	14.5	-53.7	HKG	198.3	18.6	28.1	51.6	PLW	131.2	25.3	25.5	0.8
BGR	29.7	4.6	44.7	874.3	HRV	38.3	18.5	26.2	42.0	POL	38.0	20.7	24.2	16.7
BIH	111.5	7.4	29.4	294.5	HUN	35.6	35.4	15.3	-56.9	PRI	117.5	19.3	26.1	35.3
BLR	9.5	14.5	31.8	119.4	IRL	50.0	35.8	9.7	-72.8	PRT	55.9	19.9	24.3	22.2
BOL	129.4	26.1	19.4	-25.7	IRQ	117.2	30.8	15.6	-49.5	QAT	22.0	19.8	25.8	30.3
BRA	124.3	31.3	14.2	-54.5	ISL	43.2	17.7	26.9	51.5	ROM	64.9	31.0	15.6	-49.8
CAN	34.9	20.5	25.5	24.5	ISR	26.9	23.4	21.5	-8.0	SAU	26.8	30.4	19.8	-35.0
CHE	17.6	19.4	25.6	32.1	ITA	39.7	19.5	25.4	30.2	SEN	116.8	27.1	19.1	-29.5
CHL	39.8	49.2	0.0	-100.0	JOR	10.4	17.2	29.0	69.2	SGP	24.0	16.9	28.3	<mark>67.</mark> 3
CHN	104.5	40.5	6.5	-84.1	JPN	48.5	20.6	24.8	20.2	SMR	45.3	18.8	25.8	37.5
COL	162.5	24.4	22.1	-9.6	KOR	34.0	22.0	23.5	6.9	SRB	108.9	12.0	34.6	188.2
CUB	98.1	16.5	28.9	74.8	кwт	11.8	17.2	30.5	77.3	SVK	14.7	18.1	27.0	49.0
СҮР	57.0	17.9	27.4	53.2	LBN	151.3	26.4	20.2	-23.4	SVN	18.9	19.9	25.9	29.9
CZE	20.9	16.6	28.9	73.6	LBY	100.3	19.6	26.8	36.7	SWE	17.1	18.7	26.5	41.7
DEU	43.8	19.5	25.4	30.4	LTU	29.5	21.9	24.2	10.3	TUN	19.7	25.5	20.5	-19.5
DNK	22.0	19.0	25.8	35.3	LUX	44.8	17.4	27.7	59.6	TUR	117.0	44.8	3.7	-91.8
DZA	143.8	15.2	31.2	105.9	LVA	9.4	21.3	24.5	15.3	τυν	210.1	31.3	19.4	-38.1
ECU	70.3	19.4	26.9	38.9	MAR	87.8	23.4	22.3	-5.1	URY	16.8	20.7	23.4	13.0
EGY	50.7	21.7	23.3	7.1	MEX	120.2	42.3	4.3	-89.9	USA	54.4	18.6	26.3	41.1
ESP	29.1	19.7	24.6	24.9	MLT	36.3	18.2	26.4	45.1	VEN	167.3	23.6	23.0	-2.8

Appendix A.5. Persistent and Time-Varying Inefficiency in Sanitation Facilities

Ctry	η_{i0}	τ_{i0}	$ au_{iT}$	$\Delta\%\tau_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\%\tau_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	Δ%τ _i	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\%\tau_i$
AFG	13.7	0.9520	0.8726	-8.34	DZA	4.7	0.7972	1.1292	41.65	кsv	7.7	0.8012	0.9271	15.7	QAT	9.0	0.6972	1.1353	62.8
AGO	24.3	2.9005	0.4246	-85.36	ECU	6.1	0.6408	1.2258	91.29	кwт	11.3	0.4965	1.7330	249.0	ROM	8.8	0.9167	0.9557	4.3
ALB	4.9	0.7359	1.0328	40.34	EGY	11.7	0.6155	1.2732	106.85	LAO	8.6	1.0836	0.8112	-25.1	RUS	9.8	1.6206	0.7726	-52.3
ARE	12.8	0.4473	1.4948	234.20	ERI	17.9	1.3911	0.6707	-51.78	LBN	11.4	0.7543	1.1759	55.9	RWA	18.6	4.1570	0.3599	-91.3
ARG	4.7	0.6268	1.2224	95.03	ESP	4.8	0.7503	0.9934	32.41	LBR	19.9	1.6679	0.5766	-65.4	SAU	6.2	0.5579	1.3659	144.8
ARM	4.1	0.5856	1.3203	125.46	EST	4.7	1.0121	0.8045	-20.51	LBY	4.7	0.6532	1.1799	80.6	SDN	16.4	0.9462	0.9105	-3.8
ATG	9.9	0.6239	1.2756	104.45	ETH	16.3	2.8207	0.4166	-85.23	LCA	11.8	0.7370	1.2002	62.8	SEN	17.1	1.5936	0.6247	-60.8
AUS	2.1	0.5851	1.3548	131.56	FIN	3.3	0.6723	1.0987	63.42	LKA	9.6	0.5594	1.3705	145.0	SGP	18.5	0.6525	1.2276	88.1
AUT	3.3	0.7053	1.1603	64.52	FJI	8.6	0.6484	1.2230	88.62	LSO	32.1	2.8426	0.3939	-86.1	SLB	6.2	1.1493	0.7643	-33.5
AZE	0.4	0.8301	1.2239	47.44	FRA	5.7	0.7437	1.1044	48.50		7.4	0.8134	0.8542	5.0	SLE	41.6	3.3343	0.3581	-89.3
BEI	28.4	1.1/39	1 1000	-41.35	CAR	10.0	1 2051	1.2798	95.31		5.3	0.0495	1.0300	29.6	SLV	12.2	0.8010	1.0760	24.5
BEN	23.0	0.0020	1.1000	01.09	GRP	13.0 8 1	0.6840	1 1450	67.40	MAC	17.1	0.7895	1 3756	101 1	STP	4.5	0.7934	1.0783	41 5
BEA	23.9	1 8730	0.5293	-71 74	GEO	6.7	0.0840	1 5881	237.70	MAR	73	0.0839	0.9410	-3.2	SUR	3.8	0.7020	1 1357	46.8
BGD	18.1	0.9775	0.8568	-12.35	GHA	23.6	1.0189	0.9214	-9.58	MDA	6.7	0.9577	0.8313	-13.2	SVK	4.7	0.7450	0.9468	27.1
BGR	7.3	0.7242	1.1668	61.11	GIN	26.2	1.8697	0.5654	-69.76	MDG	15.2	1.0179	0.7776	-23.6	SVN	4.7	0.8024	0.9131	13.8
BHR	17.8	0.5084	1.4177	178.86	GMB	23.4	0.7455	1.0726	43.89	MDV	10.6	0.7917	1.0216	29.0	SWE	3.2	0.6141	1.2517	103.8
BHS	8.2	0.6164	1.2684	105.78	GNB	27.4	0.9433	0.7959	-15.6	MEX	7.2	0.5863	1.2932	120.6	swz	31.8	3.9205	0.2238	-94.3
BIH	5.0	0.4344	1.3778	217.17	GNQ	26.3	0.4468	1.5073	237.4	мкр	3.7	0.6144	1.1958	94.6	SYC	12.0	0.6406	1.4537	126.9
BLR	8.7	0.9245	0.7832	-15.29	GRC	4.8	0.6693	1.1133	66.3	MLI	20.1	1.5530	0.6701	-56.8	TCD	27.2	1.2133	0.6989	-42.4
BLZ	8.7	0.5597	1.5281	173.01	GRD	13.5	0.6692	1.1941	78.4	MLT	11.1	0.6933	1.0254	47.9	TGO	27.1	1.4289	0.5768	-59.6
BMU	12.6	0.7015	1.1857	69.01	GRL	1.9	0.8162	0.8998	10.2	MMR	15.4	0.7531	1.1521	53.0	тна	9.9	0.8542	1.0632	24.5
BOL	5.7	1.2451	0.6809	-45.31	GTM	11.0	0.7945	0.9709	22.2	MNE	4.4	0.9037	0.8803	-2.6	тјк	4.9	0.8891	1.1389	28.1
BRA	7.7	0.8413	0.9783	16.29	GUM	6.6	0.8615	0.9322	8.2	MNG	2.9	0.9714	0.8915	-8.2	ткм	5.7	0.7975	1.0922	36.9
BRB	14.8	0.6321	1.2332	95.11	GUY	6.0	0.5811	1.3181	126.8	мог	27.6	1.5954	0.5499	-65.5	тмр	10.3	0.8140	0.9403	15.5
BRN	8.6	0.5649	1.4841	162.71	HKG	16.3	0.7400	1.1922	61.1	MRT	10.5	0.7360	1.1028	49.8	TON	7.0	0.6139	1.2696	106.8
BTN	4.3	1.1267	0.8158	-27.59	HND	7.2	0.6354	1.2437	95.7	MUS	16.4	0.6118	1.1280	84.4	πο	14.5	0.5905	1.3682	131.7
BWA	16.9	4.7780	0.2294	-95.20	HRV	6.0	0.6992	1.0847	55.1	MWI	24.8	4.7817	0.2292	-95.2	TUN	6.1	0.5626	1.3858	146.3
CAF	30.2	2.2752	0.3462	-84.78	нті	25.3	1.0558	0.7813	-26.0	MYS	12.8	0.5944	1.2959	118.0	TUR	9.9	0.7784	1.0757	38.2
CAN	2.4	0.6019	1.2346	105.10	HUN	5.6	0.8357	0.9301	11.3	NAM	17.4	2.8249	0.2714	-90.4	TZA	21.3	2.4433	0.4211	-82.8
CHE	5.5	0.6530	1.1853	81.51	IDN	17.0	0.6755	1.2257	81.5	NER	17.0	1.9089	0.5143	-73.1	UGA	25.2	2.3240	0.5522	-76.2
CHL	3.7	0.5719	1.3270	132.05	IND	22.1	0.9114	0.9318	2.2	NGA	43.3	1.4676	0.7347	-49.9	UKR	12.0	0.9683	0.9483	-2.1
CHN	9.7	0.6341	1.3465	112.33		7.2	0.6436	1.2201	89.6	NIC	5.4	0.7886	1.0128	28.4	URY	6.0	0.6327	1.1964	89.1
CMP	39.4	1.7065	0.5147	-09.87		12.4	0.8722	1 2212	102.7	NOR	0./	0.7157	1.1112	92.5		6.1	0.7628	1.3038	119.2
	18.8	3 2135	0.7234	-45.20		15.4	0.4355	1 2303	132.5	NPI	9.1	1 0445	0.8122	-22.2	VCT	13.3	0.7028	1.1050	82.2
	7.7	0.6733	1.2143	80.34	ISR	6.4	0.6587	1.2590	91.1	NZL	2.9	0.6165	1.2941	109.9	VEN	7.6	0.5946	1.2928	117.4
сом	22.0	0.8880	0.9056	1.98	ITA	6.3	0.6935	1.0800	55.7	OMN	3.9	0.6275	1.4447	130.2	VIR	6.7	0.8618	0.9376	8.8
CPV	10.9	0.4908	1.5307	211.90	JAM	8.7	0.7865	1.0879	38.3	PAK	20.7	0.7368	1.1105	50.7	VNM	8.4	0.5857	1.3366	128.2
CRI	7.0	0.5813	1.3156	126.32	JOR	7.0	0.5827	1.4189	143.5	PAN	7.0	0.6027	1.2754	111.6	VUT	7.9	0.7410	1.0743	45.0
CUB	4.5	0.6335	1.3243	109.05	JPN	7.3	0.6647	1.1797	77.5	PER	5.7	0.6901	1.1810	71.1	WSM	8.3	0.8815	0.9426	6.9
СҮР	7.5	0.5976	1.2876	115.47	KAZ	4.6	1.0734	0.5651	-47.4	PHL	17.9	0.5782	1.3953	141.3	YEM	17.3	0.7907	1.0713	35.5
CZE	4.3	0.7769	0.9855	26.84	KEN	21.0	3.9547	0.3345	-91.5	PNG	12.4	0.7325	1.1809	61.2	ZAF	31.6	2.1728	0.2590	-88.1
DEU	8.3	0.7100	1.0570	48.88	KGZ	4.4	0.6786	1.0508	54.8	POL	8.0	0.6847	0.9715	41.9	ZAR	25.0	1.7884	0.6103	-65.9
ILD	18.2	1.2570	0.7150	-43.12	кнм	13.4	1.4121	0.7781	-44.9	PRI	8.4	0.5602	1.1856	111.6	ZMB	21.0	4.4403	0.2595	-94.2
DNK	6.7	0.7319	0.9404	28.49	KIR	13.4	0.5757	1.2994	125.7	PRT	5.6	0.7418	0.8637	16.4	ZWE	29.2	5.8564	0.1498	-97.4
DOM	10.9	0.6297	1.2118	92.42	KOR	8.6	0.8326	0.9648	15.9	PRY	3.3	0.6747	1.1943	77.0					

Appendix A.6. Persistent and Time-Varying Inefficiency in Life Expectancy

Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% au_i$
ALB	29.4	2.3	0.6	-75.5	GEO	28.4	2.1	0.6	-71.0	MYS	27.2	0.7	0.6	-15.3
ARE	27.5	1.4	1.1	-18.9	GRC	18.5	1.3	1.7	30.7	NLD	16.6	0.7	1.5	105.2
ARG	31.7	2.0	0.4	-81.7	HKG	8.9	1.3	1.6	29.1	NOR	14.2	1.3	0.8	-40.5
AUS	8.5	0.6	2.0	232.3	HRV	13.2	0.8	1.0	19.2	NZL	7.2	0.6	2.0	210.3
AUT	13.4	0.6	1.1	101.4	HUN	8.0	0.9	2.5	162.9	PER	34.4	3.3	0.4	-88.8
AZE	30.5	1.2	1.2	-1.3	IDN	31.1	1.4	1.3	-4.9	POL	9.3	0.9	1.3	48.4
BEL	16.0	0.8	1.6	84.8	IRL	8.3	0.5	1.0	84.1	PRT	16.0	1.4	0.7	-47.6
BGR	22.5	2.4	0.8	-65.8	ISL	9.8	0.8	2.0	160.8	QAT	41.9	2.1	0.6	-69.2
BRA	31.2	1.6	1.1	-29.9	ISR	21.8	3.3	0.6	-81.3	ROM	25.3	2.9	0.6	-78.1
CAN	6.9	0.7	1.3	96.2	ITA	21.1	1.5	1.0	-33.8	RUS	15.5	2.6	0.4	-84.9
CHE	9.4	0.9	1.6	78.2	JOR	26.3	0.8	1.2	60.2	SGP	10.8	1.6	1.1	-29.8
CHL	19.7	1.2	0.9	-27.1	JPN	16.0	2.4	1.0	-60.2	SRB	15.9	3.3	0.5	-83.6
CHN	0.0	0.7	4.5	532.2	KAZ	22.4	1.3	0.5	-65.8	SVK	11.4	0.7	2.6	262.3
COL	28.7	2.8	0.6	-79.2	KGZ	42.8	3.1	0.5	-85.1	SVN	13.4	0.5	<mark>0.8</mark>	62.7
CRI	18.0	0.8	1.8	121.7	KOR	7.6	0.5	3.1	522.7	SWE	13.9	0.4	1.6	272.7
СҮР	22.1	1.0	1.2	17.4	LTU	12.5	0.7	1.4	87.8	THA	24.7	1.3	1.9	46.4
CZE	9.9	0.8	1.1	37.7	LUX	13.3	0.7	1.2	62.7	πо	28.5	1.2	1.0	-18.6
DEU	18.0	1.2	0.8	-32.2	LVA	8.7	0.7	1.4	84.0	TUN	29.2	1.9	3.8	100.5
DNK	16.9	0.9	1.1	27.7	MAC	16.7	1.0	0.9	-12.2	TUR	19.7	1.7	3.0	75.4
ESP	19.3	1.4	0.6	-55.7	MDA	18.9	2.1	0.6	-71.6	URY	20.7	0.8	0.7	-13.0
EST	6.1	0.9	0.9	-1.0	MEX	28.4	1.7	1.1	-39.4	USA	17.6	0.8	1.4	75.4
FIN	5.2	0.4	2.2	380.7	МКD	31.9	0.5	2.1	301.3	VNM	5.2	0.7	1.6	114.1
FRA	17.6	1.1	1.0	-7.9	MLT	23.4	1.1	1.0	-12.3					
GBR	18.4	0.7	1.3	86.5	MNE	24.0	2.4	0.6	-76.2					

Appendix A.7. Persistent and Time-Varying Inefficiency in Educational Quality

Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\% \tau_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$	Ctry	η_{i0}	$ au_{i0}$	τ_{iT}	$\Delta\% au_i$
AGO	28.9	5.7	26.3	359.7	ECU	37.4	13.0	13.1	0.3	кsv	25.0	9.4	15.2	63.0	RWA	14.7	8.6	12.6	46.3
ALB	40.4	14.3	12.4	-13.4	EGY	112.0	22.2	14.4	-35.2	кwт	64.7	6.6	30.6	363.6	SAU	51.7	19.1	10.3	-46.2
ARE	73.9	19.8	12.0	-39.5	ESP	45.8	10.5	17.8	69.9	LBN	49.6	15.3	12.7	-16.8	SDN	86.7	35.3	6.4	-81.9
ARG	50.1	20.2	9.5	-52.8	EST	26.8	7.7	19.1	146.6	LKA	14.3	9.5	11.3	18.8	SEN	103.1	34.4	7.4	-78.4
ARM	70.4	8.2	26.8	227.4	FIN	38.9	9.2	18.8	105.1	LTU	23.2	7.8	17.6	124.9	SGP	61.2	9.0	23.2	157.5
AUS	35.1	8.8	18.8	114.0	FRA	55.2	10.1	19.9	96.6	LUX	84.9	11.5	22.2	93.2	SLE	31.6	6.7	23.5	253.1
AUT	52.0	9.9	19.8	99.7	GAB	80.9	25.3	9.5	-62.3	LVA	17.7	6.8	18.0	164.2	SLV	80.1	40.4	5.0	-87.6
AZE	64.0	26.1	8.0	-69.1	GBR	57.8	10.3	20.1	94.8	MDA	54.6	8.6	23.1	169.4	SRB	18.0	11.4	10.7	-6.2
BDI	79.1	10.6	22.9	115.1	GEO	25.7	10.0	14.5	45.1	MDG	103.3	14.2	21.1	48.2	SVK	30.7	7.8	20.0	157.0
BEL	59.2	10.5	19.9	88.5	GHA	25.6	10.8	13.3	23.4	MEX	81.2	20.4	12.3	-39.5	SVN	30.4	8.4	18.4	118.3
BEN	62.9	21.2	10.1	-52.1	GIN	126.8	29.6	11.2	-62.1	MKD	15.7	7.1	16.2	126.8	SWE	44.2	9.4	19.4	106.3
BFA	46.7	9.4	19.9	112.5	GRC	46.8	11.1	17.0	53.2	MLI	62.4	22.8	9.3	-59.2	TCD	75.0	6.5	32.9	406.9
BGD	27.7	7.3	20.5	182.4	GTM	48.8	26.2	7.0	-73.2	MLT	44.4	9.8	18.8	92.3	TGO	50.0	25.0	7.5	-70.0
BGR	25.7	10.1	14.2	40.0	HKG	53.7	10.8	18.5	71.6	MNE	35.3	11.9	14.0	17.1	THA	19.5	8.2	15.5	89.1
BHR	73.1	17.1	14.0	-18.1	HND	43.3	17.9	10.2	-43.2	MNG	7.7	7.1	10.0	40.6	тјк	112.7	61.0	3.2	-94.8
BIH	22.2	6.9	19.7	184.1	HRV	25.3	7.6	19.0	151.9	MRT	30.1	11.4	13.5	18.6	ткм	294.4	78.8	4.6	-94.1
BLR	17.6	9.4	12.7	34.7	нті	44.5	7.2	24.9	247.4	MUS	26.4	8.6	17.0	97.4	TUR	43.3	8.3	21.5	157.3
BOL	22.1	15.5	8.7	-44.2	HUN	35.6	8.4	19.6	132.6	MWI	34.9	8.5	19.3	125.3	TZA	35.5	9.9	16.8	69.1
BRA	36.0	12.7	13.2	4.5	IDN	60.4	26.4	7.7	-70.8	MYS	21.9	10.8	12.4	15.1	UGA	24.7	13.3	10.7	-19.7
BWA	24.3	18.4	7.7	-58.4	IND	22.0	15.2	8.9	-41.5	NER	154.4	44.0	7.1	-83.8	UKR	24.7	10.7	13.2	23.9
CAN	37.3	9.7	17.6	82.0	IRL	42.4	9.2	19.5	112.6	NGA	32.8	13.8	11.6	-15.7	URY	52.2	29.4	6.3	-78.5
CHL	43.5	18.1	10.0	-44.6	IRN	18.3	10.4	11.8	13.7	NIC	60.9	16.8	12.8	-23.3	USA	60.3	11.3	18.8	65.4
CHN	17.7	9.4	12.8	35.5	IRQ	137.1	16.8	23.0	36.7	NLD	65.1	10.9	20.2	84.5	UZB	24.0	21.3	6.6	-69.0
CMR	77.6	6.9	31.9	362.9	ISR	50.5	10.0	19.4	93.7	NPL	19.9	13.1	9.7	-25.8	VEN	52.4	16.6	12.0	-27.8
COG	86.7	26.4	9.5	-64.1	ITA	71.0	15.9	14.8	-6.6	NZL	31.9	8.7	18.3	111.5	VNM	37.6	15.7	10.9	-30.6
COL	54.8	14.6	14.0	-4.6	JAM	20.9	9.5	13.7	44.4	РАК	107.7	8.9	31.1	247.4	YEM	150.7	33.4	11.3	-66.2
CRI	26.2	12.7	11.4	-10.4	JOR	60.4	9.0	23.0	154.4	PAN	45.8	23.4	7.8	-66.8	ZAF	29.2	13.0	11.7	-9.9
СҮР	50.3	10.6	18.3	72.5	JPN	66.9	10.8	20.7	92.3	PER	62.0	17.9	12.1	-32.6	ZAR	80.5	45.7	4.2	-90.8
CZE	38.1	9.2	18.7	104.3	KAZ	29.0	11.1	13.7	22.6	PHL	52.3	10.5	18.9	80.2	ZMB	26.4	15.5	9.4	-39.3
DEU	58.2	10.7	19.5	81.9	KEN	13.7	11.6	9.0	-22.1	POL	32.2	10.2	15.7	54.5	ZWE	28.9	3.6	40.1	1019.0
DNK	58.7	10.4	20.0	92.2	KGZ	85.9	64.1	2.6	-95.9	PRT	42.7	11.2	16.2	45.4					
DOM	37.6	16.9	10.1	-40.6	кнм	99.3	50.8	4.0	-92.2	ROM	36.6	13.8	12.3	-11.0					
DZA	32.3	17.0	9.4	-44.5	KOR	41.4	9.0	19.7	118.2	RUS	30.9	14.0	11.2	-20.1					

Appendix A.8. Persistent and Time-Varying Inefficiency in Access to Finance

Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\%\tau_i$	Ctry	η_{i0}	$ au_{i0}$	$ au_{iT}$	$\Delta\% \tau_i$
AGO	291.4	0.1687	0.1677	-0.61	KOR	48.7	0.1683	0.1685	0.13
ALB	19.8	0.1679	0.1688	0.52	LAO	218.6	0.1689	0.1684	-0.29
ARG	93.4	0.1687	0.1682	-0.28	LVA	18.8	0.1683	0.1686	0.19
ARM	39.0	0.1686	0.1683	-0.16	MAR	62.8	0.1685	0.1683	-0.12
BDI	95.0	0.1686	0.1684	-0.15	MDA	15.2	0.1684	0.1687	0.17
BEN	111.5	0.1686	0.1685	-0.08	MEX	108.7	0.1685	0.1685	0.03
BFA	131.2	0.1683	0.1686	0.14	MNG	37.1	0.1688	0.1680	-0.48
BGD	209.7	0.1688	0.1689	0.05	MUS	49.8	0.1685	0.1683	-0.12
BGR	22.2	0.1685	0.1684	-0.06	NIC	46.5	0.1687	0.1682	-0.30
BLZ	19.7	0.1692	0.1693	0.03	OMN	215.9	0.1696	0.1696	0.01
BOL	44.8	0.1684	0.1687	0.21	РАК	138.4	0.1695	0.1677	-1.06
BRA	86.6	0.1687	0.1682	-0.33	PER	40.1	0.1686	0.1683	-0.16
BTN	110.3	0.1685	0.1682	-0.14	POL	27.8	0.1684	0.1685	0.07
CHL	78.9	0.1685	0.1685	0.00	PRY	100.1	0.1688	0.1682	- <mark>0.</mark> 37
CHN	19.3	0.1687	0.1674	-0.75	RUS	31.1	0.1685	0.1685	0.02
CMR	112.3	0.1692	0.1686	-0.31	SAU	149.9	0.1689	0.1681	-0.42
COG	158.0	0.1697	0.1678	-1.12	SGP	112.0	0.1686	0.1685	-0.01
COL	91.3	0.1688	0.1685	-0.14	SLV	193.5	0.1659	0.1712	3.23
CRI	60.1	0.1688	0.1683	-0.29	SVN	55.6	0.1684	0.1686	0.09
СҮР	99.5	0.1686	0.1685	-0.04	TGO	135.4	0.1686	0.1696	0.58
CZE	65.1	0.1684	0.1686	0.07	THA	67.3	0.1687	0.1681	-0.35
DZA	31.3	0.1684	0.1683	-0.06	πо	37.7	0.1686	0.1686	-0.03
ECU	63.0	0.1682	0.1689	0.42	TUN	26.4	0.1684	0.1685	0.09
HND	72.0	0.1685	0.1686	0.07	TUR	93.4	0.1681	0.1687	0.39
HRV	44.5	0.1684	0.1685	0.09	TZA	107.9	0.1686	0.1686	-0.03
IDN	148.0	0.1691	0.1691	0.03	UKR	14.0	0.1684	0.1683	-0.04
IND	62.6	0.1685	0.1685	0.06	URY	49.8	0.1686	0.1681	-0.35
ISR	62.5	0.1685	0.1684	-0.05	VNM	24.5	0.1687	0.1683	-0.23
JOR	51.6	0.1688	0.1683	-0.27	ZMB	102.4	0.1686	0.1684	-0.12
JPN	90.7	0.1680	0.1697	1.01	ZWE	38.5	0.1680	0.1690	0.59
KEN	27.6	0.1691	0.1677	-0.82					

Appendix A.9. Persistent and Time-Varying Inefficiency in Old-Age Pension

Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\%\tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\%\tau_i$	Ctry	η_{i0}	τ_{i0}	τ_{iT}	$\Delta\%\tau_i$
ALB	8.7	14.2	14.9	4.9	GBR	20.3	12.2	17.5	43.9	MYS	24.3	14.7	16.9	15.0
ARG	25.5	20.3	11.7	-42.2	GEO	18.6	7.9	15.6	98.0	NER	12.4	30.9	11.4	-63.1
ARM	11.6	27.3	21.9	-20.0	GHA	23.6	13.3	18.2	36.7	NIC	29.3	17.3	18.2	4.8
AUS	12.2	15.8	14.5	-8.6	GIN	12.6	21.5	8.8	-58.9	NLD	13.2	12.8	17.4	36.0
AUT	16.8	5.7	17.8	209.4	GRC	18.6	10.8	20.4	89.8	NOR	6.9	24.7	17.7	-28.3
BDI	19.0	6.9	24.2	250.5	GTM	42.5	20.7	12.2	-41.1	РАК	9.0	16.5	15.6	-5.5
BEL	12.2	14.7	16.5	12.7	HND	44.6	20.0	9.4	-53.2	PAN	32.6	14.2	14.3	0.6
BFA	18.7	20.8	10.3	-50.5	HRV	13.8	15.8	15.5	-1.4	PER	30.1	19.5	9.9	-49.5
BGD	12.2	14.5	15.8	9.6	HUN	13.2	27.1	21.7	-19.9	PHL	28.3	15.4	16.7	8.2
BGR	16.0	14.2	22.5	58.2	IRL	9.5	13.8	15.7	14.2	POL	14.3	14.9	14.2	-4.8
BIH	12.3	13.4	16.9	25.8	IRN	23.0	17.2	12.0	-30.2	PRT	22.3	16.9	14.8	-12.3
BLR	6.3	10.3	16.1	56.7	IRQ	7.6	10.9	18.6	70.8	PRY	41.1	13.5	17.4	28.9
BOL	37.4	25.9	11.7	-54.7	ISL	6.6	14.6	8.7	-40.5	ROM	8.0	15.6	12.5	-19.5
BRA	42.3	16.4	13.2	-19.3	ISR	36.0	12.7	17.5	37.5	RUS	17.9	13.1	16.0	22.4
BTN	20.7	13.0	18.2	39.2	ITA	20.2	10.2	18.5	82.1	RWA	46.1	13.9	17.1	23.3
CAN	11.0	13.7	16.9	23.9	JOR	12.0	15.5	17.1	10.0	SEN	18.0	11.0	20.0	81.3
CHE	16.1	16.5	15.7	-4.4	KAZ	7.4	41.4	10.0	-75.8	SLB	20.0	24.6	6.6	-73.3
CHL	35.3	13.9	15.1	8.8	KGZ	8.5	17.6	4.8	-72.5	SLV	35.3	20.4	10.8	-46.8
CHN	25.1	15.5	16.1	4.3	KOR	16.5	13.0	16.1	23.9	SRB	10.9	32.8	15.0	-54.2
CMR	26.0	9.8	21.9	124.2	KSV	11.3	28.9	11.3	-60.8	SVK	9.4	20.4	15.3	-25.2
COG	28.8	11.4	20.5	80.2	LAO	14.9	12.4	18.3	47.9	SVN	6.4	9.7	20.5	112.0
COL	43.8	11.3	15.3	35.4	LBR	10.0	17.8	12.2	-31.7	SWE	7.0	10.6	22.7	115.0
CRI	29.7	8.5	17.0	99.5	LKA	22.9	18.0	18.4	2.3	TGO	26.4	9.9	21.8	119.3
СҮР	10.8	3.6	26.1	615.4	LTU	15.9	11.5	24.9	116.0	THA	22.9	19.9	12.4	-38.0
CZE	9.5	13.3	15.6	17.0	LUX	16.1	8.2	16.3	98.8	ТЈК	9.8	16.1	13.9	-13.7
DEU	14.5	15.2	17.0	12.2	LVA	16.7	18.5	15.0	-19.2	TUN	15.8	15.5	15.3	-1.1
DJI	28.2	17.1	14.7	-13.8	MDA	13.5	24.7	0.0	-100.0	TUR	24.5	17.9	20.9	16.4
DNK	9.2	5.1	22.9	350.0	MDG	17.5	8.0	19.6	145.0	TZA	15.4	16.9	13.8	-18.1
DOM	40.0	15.6	9.8	-37.3	MEX	33.6	17.3	17.0	-1.9	UGA	28.8	12.4	14.1	14.2
ECU	37.4	20.0	9.4	-53.0	MKD	27.1	20.0	9.1	-54.5	UKR	5.3	22.6	9.9	-56.4
EGY	8.7	15.3	12.6	-17.5	MLI	12.3	21.9	8.4	-61.9	URY	17.8	19.5	8.8	-54.6
ESP	18.4	4.1	21.2	412.7	MLT	10.3	9.3	16.6	78.3	USA	26.4	14.9	17.2	15.3
EST	13.0	12.4	23.1	86.3	MNE	11.0	14.5	18.9	30.1	VEN	36.7	20.6	11.9	-42.5
FIN	7.3	11.1	14.6	31.6	MNG	9.2	19.0	11.6	-38.9	VNM	16.1	11.8	13.6	14.8
FJI	20.9	20.2	11.0	-45.3	мог	29.2	6.0	25.9	328.0	YEM	12.0	9.1	21.2	133.4
FRA	15.2	3.6	17.5	390.1	MRT	7.9	18.3	11.2	-38.7	ZAF	56.4	14.5	17.8	22.7
FSM	29.1	16.4	15.5	-6.0	MUS	15.4	13.6	17.1	25.6	ZMB	43.6	14.5	18.5	27.4

Appendix A.10. Persistent and Time-Varying Inefficiency in Income Inequality